Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(K\in HK;K\in BC\)
Do đó: HK cắt BC tại K
b: Xét ΔBAC có
H,K lần lượt là trung điểm của BA,BC
=>HK là đường trung bình
=>HK//AC
c: C thuộc BK
C thuộc CD
Do đó: BK cắt CD tại C
e: Trong mp(ABCD), ta có: HK và CD không song song vối nhau
=>HK cắt CD tại M
a: Xét ΔCBD có M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình của ΔCBD
=>MN//BD
mà \(BD\subset\left(ABD\right)\) và MN không nằm trong mp(ABD)
nên MN//(ABD)
b: Chọn mp(ACD) có chứa AM
\(CD\subset\left(ACD\right);CD\subset\left(BCD\right)\)
Do đó: \(\left(ACD\right)\cap\left(BCD\right)=CD\)
Ta có: \(M=AM\cap CD\)
=>M là giao điểm của AM với mp(BCD)
=>AM cắt mp(BCD) tại M
c: \(N\in BC\subset\left(ABC\right);A\in\left(ABC\right)\)
Do đó: \(AN\subset\left(ABC\right)\)
a: Xét ΔSBC có SH/SB=SK/SC=1/2
nên HK//BC
mà \(BC\subset\left(ABC\right)\); HK không nằm trong mp(ABC)
nên HK//(ABC)
b: \(K\in SC\subset\left(SBC\right);K\in AK\)
Do đó: \(K\in AK\cap\left(SBC\right)\)
mà \(A\notin\left(SBC\right)\)
nên \(K=AK\cap\left(SBC\right)\)
c: \(A\in\left(SAB\right);H\in SB\subset\left(SAB\right)\)
Do đó: \(AH\subset\left(SAB\right)\)
a: Xét ΔCBD có
M,N lần lượt là trung điểm của CD,CB
=>MN là đường trung bình
=>MN//BD
b: \(D\in AM;D\in DA\)
Do đó: AM cắt CD tại D
c: Trong mp(ABCD), ta có: BM không song song với DN
=>BM cắt DN tại I
e: Trong mp(ABCD), ta có: MN và AB không song song
=>MN cắt AB tại K
b: \(BD\subset\left(ABD\right)\)
=>BD nằm trong mp(ABD)
c: \(D\in CD\)
\(D\in\left(ABD\right)\)
Do đó: \(D=CD\cap\left(ABD\right)\)
=>CD cắt (ABD)
d: Xét ΔCBD có H,K lần lượt là trung điểm của CB,CD
=>HK là đường trung bình
=>HK//BD
=>HK//(ABD)