Ba vị trí A, B, C trong thực tiễn lần lượt được mô tả bởi ba đỉnh của tam giác A’B’C’ trên bản vẽ. Biết tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số \(\frac{1}{{1\,000\,000}}\) và \(A'B' = 4cm,\,\,B'C' = 5cm,\,\,C'A' = 6cm\). Tính khoảng cách giữa hai vị trí A và B, B và C, C và A trong thực tiễn (theo đơn vị kilômét).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, ta có:
\(\Delta ABC \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,000\,000}}\)
\(\Delta A'B'C' \backsim\Delta MNP\) theo hệ số tỉ lệ là \(\frac{1}{{1\,500\,000}}\).
Từ đó ta có:
\(\begin{array}{l}\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = 1\,000\,000\\ \Rightarrow AB = 1\,000\,000MN,\,\,BC = 1\,000\,000NP,\,\,CA = 1\,000\,000PM\end{array}\)
và \(\begin{array}{l}\frac{{A'B'}}{{MN}} = \frac{{B'C'}}{{NP}} = \frac{{C'A'}}{{PM}} = 1\,500\,000\\ \Rightarrow A'B' = 1\,500\,000MN,\,\,B'C' = 1\,500\,000NP,\,\,C'A' = 1\,500\,000PM\end{array}\)
Ta thấy
\(\begin{array}{l}\frac{{AB}}{{A'B'}} = \frac{{1\,000\,000MN}}{{1\,500\,000MN}} = \frac{2}{3}\\\frac{{BC}}{{B'C'}} = \frac{{1\,000\,000NP}}{{1\,500\,000NP}} = \frac{2}{3}\\\frac{{CA}}{{C'A'}} = \frac{{1\,000\,000PM}}{{1\,500\,000PM}} = \frac{2}{3}\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{CA}}{{C'A'}}\end{array}\)
\( \Rightarrow \Delta ABC \backsim\Delta A'B'C'\) (c-c-c) với tỉ số đồng dạng là \(\frac{2}{3}\).
b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)
nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)
hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)
a: Ta có: ΔA'B'C'∼ΔABC
nên A'B'/AB=B'C'/BC=A'C'/AC
=>A'B'/6=B'C'/12=A'C'/8=3/2
=>A'B'=9cm; B'C'=18cm; A'C'=12cm
b: Ta có: ΔA'B'C'∼ΔABC
nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)
Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên A B A ' B ' = A C A ' C ' = B C B ' C ' = k
Suy ra A ' B ' A B = A ' C ' A C = B ' C ' B C = 1 k
Áp dụng tính chất dãy tỉ số bằng nhau ta có
A ' B ' A B = A ' C ' A C = B ' C ' B C = A ' B ' + A ' C ' + B ' C ' A B + A C + B C = 1 k
Vậy tỉ số chu vi của tam giác A’B’C’ và ABC là 1 k
Đáp án: B
ΔA'B'C' đồng dạng với ΔABC
=>A'B'/AB=B'C'/BC=A'C'/AC=k và góc A'=góc A; góc B=góc B'; góc C'=góc C
=>góc BAE=góc B'A'E'
Xét ΔABE và ΔA'B'E' có
góc B=góc B'
góc BAE=góc B'A'E'
=>ΔABE đồng dạng với ΔA'B'E'
=>AE/A'E'=AB/A'B'
=>A'E'/AE=A'B'/AB=k
Vì tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số \(\frac{1}{{1\,000\,000}}\) nên ta có:
\(\begin{array}{l}\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}} = \frac{1}{{1\,000\,000}}\\ \Rightarrow \frac{4}{{AB}} = \frac{5}{{BC}} = \frac{6}{{AC}} = \frac{1}{{1\,000\,000}}\end{array}\)
\( \Rightarrow \)AB = 4 000 000cm = 40km.
\( \Rightarrow \)BC = 5 000 000cm = 50km.
\( \Rightarrow \)AC = 6 000 000cm = 60km.
Vậy khoảng cách giữa A và B là 40km, khoảng cách giữa B và C là 50km, khoảng cách giữa C và A là 60km.