`4(x^2 +11x+30)(x^2 +22x+120)=3x^2`
giải pt bằng đặt ẩn phụ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq 2$ hoặc $x\leq 1$
Đặt $\sqrt{x^2-3x+2}=a(a\geq 0)\Rightarrow x^2-3x-4=a^2-6$
Phương trình đã cho trở thành:
\(a=a^2-6\)
\(\Leftrightarrow a^2-a-6=0\Leftrightarrow a(a-3)+2(a-3)=0\)
\(\Leftrightarrow (a-3)(a+2)=0\Rightarrow a=3\) (do $a\geq 0$)
\(\Leftrightarrow \sqrt{x^2-3x+2}=3\)
\(\Rightarrow x^2-3x+2=9\)
\(\Leftrightarrow x^2-3x-7=0\Rightarrow x=\frac{3\pm \sqrt{37}}{2}\) (đều thỏa mãn)
Vậy.........
Đặt \(\sqrt{x^2+9}=a\) ( \(a\ge9\) ) => \(x^2+9=a^2\)
Đặt \(3x+5=b\) => \(2x+3=\dfrac{2}{3}a-\dfrac{1}{3}\)
Ta có; \(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
<=> \(2ab=3a^2+\left(\dfrac{2}{3}b-\dfrac{1}{3}\right)\)
<=> \(6ab=9a^2+2b-1\)
<=> \(\left(9a^2-1\right)-\left(6ab-2b\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1\right)-2b\left(3a-1\right)=0\)
<=> \(\left(3a-1\right)\left(3a+1-2b\right)=0\)
<=> \(\left[{}\begin{matrix}3a=1\left(1\right)\\3a-2b=-1\left(2\right)\end{matrix}\right.\)
(1) => \(3\sqrt{x^2+9}=1\) => Vô nghiệm ( vì \(\sqrt{x^2+9}\ge9\) )
(2) => \(3\sqrt{x^2+9}-2\left(3x+5\right)=-1\)
=> \(x=0\) (TM)
P/s: Mk nghĩ vì bn khá giỏi nên mk sẽ lm hơi tắt!
\(2\left(3x+5\right)\sqrt{x^2+9}=3x^2+2x+30\)
\(\Leftrightarrow2\left(3x+5\right)\sqrt{x^2+9}-30=3x^2+2x\)
\(\Leftrightarrow\dfrac{4\left(3x+5\right)^2\left(x^2+9\right)-900}{2\left(3x+5\right)\sqrt{x^2+9}+30}=x\left(3x+2\right)\)
\(\Leftrightarrow\dfrac{36x^4+120x^3+424x^2+1080x}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow\dfrac{4x\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-x\left(3x+2\right)=0\)
\(\Leftrightarrow x\left(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)\right)=0\)
Dễ thấy: \(\dfrac{4\left(9x^3+30x^2+106x+270\right)}{2\left(3x+5\right)\sqrt{x^2+9}+30}-\left(3x+2\right)>0\)
\(\Rightarrow x=0\)
ĐK: \(-2\le x\le2\)
\(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
<=> \(3\left(\sqrt{2+x}-2\sqrt{2-x}\right)=10-3x-4\sqrt{4-x^2}\)
Đặt: \(t=\sqrt{2+x}-2\sqrt{2-x}\) => \(t^2=10-3x-4\sqrt{4-x^2}\)
Khi đó pt trở thành:
\(3t=t^2\)
<=> \(t^2-3t=0\)
<=> \(t\left(t-3\right)=0\)
<=> \(\orbr{\begin{cases}t=0\\t=3\end{cases}}\)
đến đây bn tự giải nốt nhé
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
pt trở thành: \(t^2-2-3t+9=0\)
\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
Để giải phương trình này bằng đặt ẩn phụ, chúng ta sẽ đặt ẩn phụ là một biến mới, ví dụ như u. Sau đó, ta thực hiện phép đặt ẩn phụ bằng cách thay thế x = u - 11. Bằng cách này, ta có thể chuyển phương trình ban đầu thành một phương trình bậc nhất với ẩn phụ u.