cặp số nguyên dương chẵn x;y thõa mãn biểu thức \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
\(\frac{2x}{4}+\frac{3}{y}=\frac{5}{4}\)
\(\frac{3}{y}=\frac{5}{4}-\frac{2x}{4}\)
\(\frac{3}{y}=\frac{5-2x}{4}\)
y(5-2x)=3*4
y(5-2x)=12
=>y thuộc Ư(12)và 5-2x thuộc Ư lẻ của 12
Ư(12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}
Ư lẻ của 12={-3;-1;1;3}Ta có bảng sau:
5-2x | -3 | -1 | 1 | 3 |
x | 4 | 3 | 2 | 1 |
y | -4 | -12 | 12 | 4 |
Vậy (x,y)={ (4,-4);(3;-12);(2,12);(1,4)}
Tìm x thuộc Z biết:
a, x - 12 là số nguyên dương chẵn nhỏ nhất
b, 5 - x là số nguyên dương lẻ lớn nhất
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Xét điểm M(a;b) bất kì nằm trog ( tính cả biên ) của hình tròn ( \(C_n\)) : \(x^2+y^2\le n^2\)
Mỗi điểm M như vậy tương ứng với 1 và chỉ 1 hình vuông đơn vị S(M) mà M là đỉnh ở goc trái , phía dưới
Từ đó suy ra \(S_n\)= số hình vuông S (M) = tổng diện tích của S(M) với \(M\in\left(C_n\right)\)
Rõ ràng các hình vuông S(M) , với \(M\in\left(C_{ }_n\right)\)đều nằm trog hình tròn \(\left(C_{n+\sqrt{2}}\right):x^2+y^2\le\left(n+\sqrt{2}\right)^2\)
Do đó : \(S_n\le\pi\left(n+\sqrt{2}\right)^2\)(1)
Tương tự như vậy , ta thấy các hình vuông S(M) , với \(M\in\left(C_n\right)\)phủ kín hình tròn
\(\left(C_{n-\sqrt{2}}\right):x^2+y^2\le\left(n-\sqrt{2}\right)^2\)vì thế \(S_n\ge\pi\left(n-\sqrt{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(\sqrt{\pi}\left(n-\sqrt{2}\right)\le\sqrt{S_n}\le\sqrt{\pi}\left(n+\sqrt{2}\right)\)
suy ra \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\le\frac{\sqrt{S_n}}{n}\le\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)\)
Mà lim \(\sqrt{\pi}\left(1-\frac{\sqrt{2}}{n}\right)\)= lim\(\sqrt{\pi}\left(1+\frac{\sqrt{2}}{n}\right)=\sqrt{\pi}\)nên lim \(\sqrt{\frac{S_n}{n}}=\sqrt{\pi}\)
@ Huy @ Bài làm đánh đẹp lắm. Nhưng cô cũng không hiểu được rõ ràng là toán 6 sao có lim, phương trình đường tròn;... ( lớp 11 , 12 ) ở đây.
Lần sau chú ý giải Toán 6 không cần dùng kiến thức quá cao nhé.
Tuy nhiên đề bài bạn thiếu. Lần sau em có thể sửa lại đề bài trước rồi hẵng làm nha.
ta có: x/2 + 3/y = 5/4
=> 5/4 - x/2 = 3/y
=> 5/4 - 2x/4 = 3/y
=> (5 -2x)/4 = 3/y
=> y(5 - 2x) = 12
Suy ra: y; 5-2x thuộc ước của 12 = 1; -1; 2; -2; 3;-3;4;-4;6;-6;12;-12 (1)
Vì x, y là số nguyên dương nên 2x>0 => 5 - 2x>4
Nên từ (1) suy ra 5-2x = 6;12
Ta có bảng:
5-2x | 6 | 12 |
y | 2 | 1 |
2x | -1 | -7 |
x | không có | không có |
Vậy không có giá trị để x,y thỏa mãn đề bài
Ta có : \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
\(\Rightarrow\frac{5}{4}-\frac{x}{2}=\frac{3}{y}\)
\(\Rightarrow\frac{5}{4}-\frac{2x}{4}=\frac{3}{y}\)
\(\Rightarrow\frac{5-2x}{4}=\frac{3}{y}\)
\(\Rightarrow y\left(5-2x\right)=12\)
\(\Rightarrow\) y = 5 - 2x \(\in\) Ư(12) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 4 ; -4 ; 6 ; -6 ; 12 ; -12 }
Vì x ; y là số nguyên dương nên 2x > 0 \(\rightarrow\) 5 - 2x > 4
\(\Rightarrow\) 5 - 2x = 6 ; 12 nên ta có bảng sau :
5 - 2x | 6 | 12 |
y | 2 | 1 |
2x | -1 | -7 |
x | không có | không có |
Vậy không có x ; y để thỏa mãn đề bài .
Đây nhé: Câu hỏi của Trần Thị Thùy Trang - Toán lớp 7 - Học toán với OnlineMath
cặp số nguyên dương là 2 nhá
bởi vì 2+5=5 và 2+4=4 ,