Cho hình thoi ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA.
Chứng minh EFGH là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:
E H = F G = 1 2 B D v à H G = E F = 1 2 A C
Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.
Xét \(\Delta ADB\):
\(AE=EB\left(gt\right)\)
\(HD=HA\left(gt\right)\)
\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).
\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)
Xét \(\Delta CDB:\)
\(FB=FC\left(gt\right)\)
\(GC=GD\left(gt\right)\)
\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).
\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)
Vậy tứ giác \(EFGH\)là hình bình hành.
b) Xét \(\Delta AEH\)và \(\Delta EBF\):
\(AE=EB\left(gt\right)\)
Góc A = Góc B = 90o (ABCD là hình chữ nhật)
\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)
\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)
\(\Rightarrow HE=HF\)
mà tứ giác EFGH là hình bình hành.
Vậy hình bình hành \(EFGH\)là hình thoi.
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AC và EF=AC/2(1)
Xét ΔCDA có
G là trung điểm của CD
H là trung điểm của DA
Do đó: GH là đường trung bình
=>GH//AC và GH=AC/2(2)
Từ (1) và (2) suy ra EF//GH và EF=GH
hay EFGH là hình bình hành
b: EF=GH=AC/2=3(cm)
FG=EH=BD/2=4(cm)
Bài 1
Áp dụng tính chất đường trung bình vào
*\large\Delta ABD có: AE=EB, BH=HD EH //AD, EH=\frac{AD}{2}
*\large\Delta ACD có: AF=CF, DG=GC GF //AD, GF=\frac{AD}{2}
*\large\Delta ABC có: AE=EB, BF=CF EF //AD, EF=\frac{BC}{2}
*\large\Delta BCD có: BH=HD, DG=GC HG //AD, GH=\frac{BC}{2}
Tứ giác EFGH có: EH//GF//AD, EH=GF=\frac{AD}{2}
EFGH là hbh
a)Để EFGH là hcn EH \perp \ EF, EF \perp \ FG, FG \perp \ GH
mà EH//AD, EF//BC, FG//AD , GH//BC
AB \perp \ BC
\widehat{ADC}+\widehat{BCD}=90^o
__________________
mình lớp 5 mong bạn thông cảm
a) EFGH là hình bình hành (các cặp cạnh đối song song)
b) Tam giác CID có PJ//ID và P là trung điểm của CD.
Þ J là trung điểm của CI Þ JC = IJ
Þ AI = IJ = JC;
c) Ta có: SASCQ = 1 2 SEFGH, HE = 2 5 SASCQ.
Þ Kẻ GK ^ CQ tại K Þ SEFGH= GK.HE=GK. 2 5 SASCQ.
Þ SEFGH = 2 5 . 1 2 S A B C D ⇒ S = E F G H 1 5 S A B C D
a) nối A với C , B với D được:
EF // AC ( đường trung bình của tam giác BAC)
HG // AC ( " " " " " " ) suy ra EF // AC do cùng // AC
HE // DB ( đường trung bình tam giác ADB )
FG // DB ( " " " " " " ) suy ra HE // FG do cùng // với DB
Xét tứ giác EFGH có 2 cặp cạnh đối song song nên EFGH là hình bình hành
b) EFGH là hình ....
Thoi , suy ra EH = GH nên AC=BD ( do là đường trung bình của hai tam giác ADB,ADC)
vì AC = BD nên ABCD là hình thang cân
Chữ nhật, suy ra HE vuông góc với HG nên AC vuông góc với BD
Hình vuông , kết hợp 2 yếu tố của 2 hình trên được AC=BD và AC vuông góc với BD.
Tích nha☺
a) Mình đề nghị bạn giở SGK toán 8 tập 1 trang 93 bài 7 hình học chương I nhé.
b) Ta có: \(AC\perp BD\)
mà HE//BD=>\(HE\perp AC\)
mà AC//HG
=> \(\widehat{EHG}=90^o\)
Chứng minh tương tự với 2 trong 3 góc còn lại của tứ giác EFGH.
=> Nếu AC vuông góc với BD thì EFHG là hình chữ nhật.
Đây là hướng làm nhé, còn bạn hiếu sao thì trình bày theo ý bạn nhé:vv
Xét ΔABD có
E,H lần lượt là trung điểm của AB,AD
=>EH là đường trung bình
=>EH//BD và EH=BD/2
Xét ΔBCD có
G,F lần lượt là trung điểm của CD,CB
=>GF là đường trung bình
=>GF//BD và GF=BD/2
=>EH//GF và EH=GF
=>EFGH là hình bình hành
Hình vẽ đâu b