Cho tam giác ABC cân tại A,AH là đường cao ,trên AH lấy P sao cho PH=BH trên HC lấy I sao cho HI=HA.Chứng minh P là trực tâm tam giác ABI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm cua BP và AR là S
Xét tam giác BPH có:
BH=PH(giả thiết)
góc BHP=90"(vì AH là đường cao)
=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45" (1)
Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45" (2)
Cộng từng về của (1) và (2) =>góc ASP=90"
Hay BP vông góc với AR
Xét tam giác BAR có
BP vuông góc với AR(cmt)
AH vuông góc Với BC(giả thiết)
BP cắt AH tại P=>P là trực tâm của tam giác BAR
Hình vẽ: https://imgur.com/4l52wae
Giải:
Gọi G là gio điểm của BP và AR
Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ
Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ
Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ
=> góc AGP = 180 - 45 - 45 = 90 (độ)
=> BG là đường cao của tm giác ABR
Mà BG cắt AH tại P nên P là trực tâm tam giác BAR
a) Xét \(\Delta\)AHC: ^AHC=90\(^0\)và AH=HC => \(\Delta\)AHC vuông cân tại H
=> ^HAC=^HCA=45\(^0\)hay ^DCB=45\(^0\)(1)
Xét \(\Delta\)BHI: ^BHI=90\(^0\)và HB=HI => \(\Delta\)BHI vuông cân tại H
=> ^HBI=^HIB=45\(^0\)hay ^DBC=45\(^0\)(2)
Từ (1) và (2) => ^DCB=^DBC=45\(^0\)=> \(\Delta\)BDC vuông cân tại D
=> BD \(⊥\)AC hay IB \(⊥\)AC tại D (đpcm)
=> BD là đường cao của \(\Delta\)ABC
AH cũng là đường cao của \(\Delta\)ABC . Mà BD gia AH tại I => I là trọng tâm của \(\Delta\)ABC
b) Nối điểm H với 2 điểm P và Q
Q là trung điểm của AC => HQ là trung tuyến của \(\Delta\)AHC. Mà \(\Delta\)AHC vuông cân
=> HQ đồng thời là đường cao của \(\Delta\)AHC=> HQ \(⊥\)AC .Mà BD \(⊥\)AC
=> HQ // BD hay HQ // PD (P thuộc BD) (Quan hệ song song vuông góc)
Tương tự: P là trung điểm của BI và \(\Delta\)BHI vuông cân tại H
=> HP là đường cao của \(\Delta\)BHI => HP\(⊥\)BD. Mà DC\(⊥\)BD tại D => HP//DC (Quan hệ song song vuông góc)
=> HP//DQ (Q thuộc DC)
Ta có: HQ//PD và HP//DQ => HQ=PD và HP=DQ (Tính chất đoạn chắn)
Lại có: HQ đồng thời là đường phân giác của \(\Delta\)AHC=> ^QHA=^QHC=^AHC/2=90\(^0\)/2=45\(^0\)
Mà ^QCH=45\(^0\)=> ^QHC=^QCH=45\(^0\)=> \(\Delta\)HQC vuông cân tại Q => QC=HQ (3)
Tương tự với \(\Delta\)BHI có: \(\Delta\)BHP vuông cân tại P=> PH=BP (4)
Ta có: PD+BP=BD (5)
Thế (3) và (4) vào (5), ta có: QC+PH=BD (đpcm)
k cho mk nhé!
Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.
Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.
Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)
Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B
=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)
Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH
Xét tam giác MNH và tam giác MKH có:
Cạnh MH chung
^NHM=^KHM => Tam giác MNH=Tam giác MKH (c.g.c)
HN=HK
=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900
MK vuông góc với AH => Tam giác MAK vuông tại K
=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)
=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)
Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:
AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)
Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)
--End--
\(\Delta\)
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABI cân tại A
a. xét tam giác vuông ABH và tam giác vuông AMH có:
BH = MH ( gt )
AM: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông AMH ( 2 cạnh góc vuông )
=> AB = AC ( 2 cạnh tương ứng )
=> ABC cân tại A
b. áp dụng định lý pitago vào tam giác vuông AHC có:
\(AC^2=AH^2+HC^2\)
\(5^2=3^2+HC^2\)
=>\(HC=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
c. ta có :
AE = AF ( gt ) => tam giác AEF cân tại A
ta có : AH là đường cao của tam giác ABM cũng là đường cao tam giác AEF
=> EF vuông AH
Mà BC cũng vuông AH
=> EF // BC ( 2 cạnh cùng vuông với cạnh thứ 3 )