Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H I P Q
a) Xét \(\Delta\)AHC: ^AHC=90\(^0\)và AH=HC => \(\Delta\)AHC vuông cân tại H
=> ^HAC=^HCA=45\(^0\)hay ^DCB=45\(^0\)(1)
Xét \(\Delta\)BHI: ^BHI=90\(^0\)và HB=HI => \(\Delta\)BHI vuông cân tại H
=> ^HBI=^HIB=45\(^0\)hay ^DBC=45\(^0\)(2)
Từ (1) và (2) => ^DCB=^DBC=45\(^0\)=> \(\Delta\)BDC vuông cân tại D
=> BD \(⊥\)AC hay IB \(⊥\)AC tại D (đpcm)
=> BD là đường cao của \(\Delta\)ABC
AH cũng là đường cao của \(\Delta\)ABC . Mà BD gia AH tại I => I là trọng tâm của \(\Delta\)ABC
b) Nối điểm H với 2 điểm P và Q
Q là trung điểm của AC => HQ là trung tuyến của \(\Delta\)AHC. Mà \(\Delta\)AHC vuông cân
=> HQ đồng thời là đường cao của \(\Delta\)AHC=> HQ \(⊥\)AC .Mà BD \(⊥\)AC
=> HQ // BD hay HQ // PD (P thuộc BD) (Quan hệ song song vuông góc)
Tương tự: P là trung điểm của BI và \(\Delta\)BHI vuông cân tại H
=> HP là đường cao của \(\Delta\)BHI => HP\(⊥\)BD. Mà DC\(⊥\)BD tại D => HP//DC (Quan hệ song song vuông góc)
=> HP//DQ (Q thuộc DC)
Ta có: HQ//PD và HP//DQ => HQ=PD và HP=DQ (Tính chất đoạn chắn)
Lại có: HQ đồng thời là đường phân giác của \(\Delta\)AHC=> ^QHA=^QHC=^AHC/2=90\(^0\)/2=45\(^0\)
Mà ^QCH=45\(^0\)=> ^QHC=^QCH=45\(^0\)=> \(\Delta\)HQC vuông cân tại Q => QC=HQ (3)
Tương tự với \(\Delta\)BHI có: \(\Delta\)BHP vuông cân tại P=> PH=BP (4)
Ta có: PD+BP=BD (5)
Thế (3) và (4) vào (5), ta có: QC+PH=BD (đpcm)
k cho mk nhé!
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.
A B C H N M K
Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.
Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)
Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B
=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)
Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH
Xét tam giác MNH và tam giác MKH có:
Cạnh MH chung
^NHM=^KHM => Tam giác MNH=Tam giác MKH (c.g.c)
HN=HK
=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900
MK vuông góc với AH => Tam giác MAK vuông tại K
=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)
=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)
Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:
AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)
Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)
--End--
\(\Delta\)