Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm cua BP và AR là S
Xét tam giác BPH có:
BH=PH(giả thiết)
góc BHP=90"(vì AH là đường cao)
=>tam giác BHP vuông cân tại H=>góc BPH=45'=>góc APS=45" (1)
Tương tự ta cũng có tam giác AHR vuông cân tại H=>góc HAS=45" (2)
Cộng từng về của (1) và (2) =>góc ASP=90"
Hay BP vông góc với AR
Xét tam giác BAR có
BP vuông góc với AR(cmt)
AH vuông góc Với BC(giả thiết)
BP cắt AH tại P=>P là trực tâm của tam giác BAR
Hình vẽ: https://imgur.com/4l52wae
Giải:
Gọi G là gio điểm của BP và AR
Góc AHR = 90 độ mà HA = HR nên tam giác HAR vuông cân tại H => góc HAR = góc HRA = 45 độ
Góc PHB = 90 độ mà HP = HB nên tam giác HPB vuông cân tại H => góc HPB = góc HBP = 45 độ
Mà góc APG = góc HPB (đối đỉnh) nên góc APG = 45 độ
=> góc AGP = 180 - 45 - 45 = 90 (độ)
=> BG là đường cao của tm giác ABR
Mà BG cắt AH tại P nên P là trực tâm tam giác BAR
a) Xét \(\Delta\)AHC: ^AHC=90\(^0\)và AH=HC => \(\Delta\)AHC vuông cân tại H
=> ^HAC=^HCA=45\(^0\)hay ^DCB=45\(^0\)(1)
Xét \(\Delta\)BHI: ^BHI=90\(^0\)và HB=HI => \(\Delta\)BHI vuông cân tại H
=> ^HBI=^HIB=45\(^0\)hay ^DBC=45\(^0\)(2)
Từ (1) và (2) => ^DCB=^DBC=45\(^0\)=> \(\Delta\)BDC vuông cân tại D
=> BD \(⊥\)AC hay IB \(⊥\)AC tại D (đpcm)
=> BD là đường cao của \(\Delta\)ABC
AH cũng là đường cao của \(\Delta\)ABC . Mà BD gia AH tại I => I là trọng tâm của \(\Delta\)ABC
b) Nối điểm H với 2 điểm P và Q
Q là trung điểm của AC => HQ là trung tuyến của \(\Delta\)AHC. Mà \(\Delta\)AHC vuông cân
=> HQ đồng thời là đường cao của \(\Delta\)AHC=> HQ \(⊥\)AC .Mà BD \(⊥\)AC
=> HQ // BD hay HQ // PD (P thuộc BD) (Quan hệ song song vuông góc)
Tương tự: P là trung điểm của BI và \(\Delta\)BHI vuông cân tại H
=> HP là đường cao của \(\Delta\)BHI => HP\(⊥\)BD. Mà DC\(⊥\)BD tại D => HP//DC (Quan hệ song song vuông góc)
=> HP//DQ (Q thuộc DC)
Ta có: HQ//PD và HP//DQ => HQ=PD và HP=DQ (Tính chất đoạn chắn)
Lại có: HQ đồng thời là đường phân giác của \(\Delta\)AHC=> ^QHA=^QHC=^AHC/2=90\(^0\)/2=45\(^0\)
Mà ^QCH=45\(^0\)=> ^QHC=^QCH=45\(^0\)=> \(\Delta\)HQC vuông cân tại Q => QC=HQ (3)
Tương tự với \(\Delta\)BHI có: \(\Delta\)BHP vuông cân tại P=> PH=BP (4)
Ta có: PD+BP=BD (5)
Thế (3) và (4) vào (5), ta có: QC+PH=BD (đpcm)
k cho mk nhé!
Câu a và b mình trả lời hộ bạn rùi. Bây giờ mình sẽ giải câu c.
Trên cạnh AB lấy điểm M sao cho BM=BH. Trên AH lấy điểm K sao cho HK=HN. Nối M với K và H.
Xét tam giác MNH: ^MNH=900 => ^NMH+^NHM=900 (1)
Lại có: ^KHM+^BHM=^KHB=900 . Mà BM=BH => Tam giác HBM cân tại B
=> ^BHM=^BMH => ^KHM+^BMH=900 (Thay vào biểu thức trên) hay ^KHM+^NMH=900 (2)
Từ (1) và (2) => ^NMH+^NHM=^KHM+^NMH=900 => ^NHM=^KHM=900-^NMH
Xét tam giác MNH và tam giác MKH có:
Cạnh MH chung
^NHM=^KHM => Tam giác MNH=Tam giác MKH (c.g.c)
HN=HK
=> MNH=^MKH (2 góc tương ứng) . Mà MNH=900 => ^MKH=900
MK vuông góc với AH => Tam giác MAK vuông tại K
=> AM là cạnh lớn nhất trong tam giác MAK (Quan hệ giữa góc và cạnh đối diện trong tam giác)
=> AM>AK => AB-BM>AH-HK (3) (Hệ thức cộng trừ đoạn thẳng)
Thay BM=BH và HK=HN theo cách vẽ vào (3), ta có:
AB-BH>AH-HN <=> AB>AH-HN+BH <=> HN+AB>AH+BH (Chuyển vế đổi dấu) (4)
Thay AH=HC vào (4), ta có: HN+AB>HC+HB => HN+AB>BC (đpcm)
--End--
\(\Delta\)
a: Xét ΔABC có AB<AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB<HC
b: Xét ΔABI có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABI cân tại A
a. xét tam giác vuông ABH và tam giác vuông AMH có:
BH = MH ( gt )
AM: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông AMH ( 2 cạnh góc vuông )
=> AB = AC ( 2 cạnh tương ứng )
=> ABC cân tại A
b. áp dụng định lý pitago vào tam giác vuông AHC có:
\(AC^2=AH^2+HC^2\)
\(5^2=3^2+HC^2\)
=>\(HC=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)
c. ta có :
AE = AF ( gt ) => tam giác AEF cân tại A
ta có : AH là đường cao của tam giác ABM cũng là đường cao tam giác AEF
=> EF vuông AH
Mà BC cũng vuông AH
=> EF // BC ( 2 cạnh cùng vuông với cạnh thứ 3 )
a: XétΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC
AI chung
=>ΔAIB=ΔAIC
b: Xét ΔCIE có
CH vừa là đường cao, vừa là trung tuyến
=>ΔCIE cân tại C
a: AH=8cm
b: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
c: Xét ΔDBH và ΔECH
DB=EC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔDBH=ΔECH
Suy ra: HD=HE
hay ΔHDE cân tại H
d: Ta có: AD=AE
nên A nằm trên đường trung trực của DE(1)
Ta có: HD=HE
nên H nằm trên đường trung trực của DE(2)
Từ (1) và (2) suy ra AH là đường trung trực của DE