Một người đi xe đạp từ a đến b quãng đường dài 33 km khi về người đó đi trên quãng đường khác dài 62 km nhưng khi về vận tốc lớn hơn vận tốc đi 3 km/h tính vận tốc lúc đi biết thời gian đi nhiều hơn thời gian về 1 giờ 30 phút
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc lúc đi là x(km/h)(ĐK: x>0)
Vận tốc lúc về là x+3(km/h)
Thời gian đi là \(\dfrac{33}{x}\left(h\right)\)
Thời gian về là \(\dfrac{33+29}{x+3}=\dfrac{62}{x+3}\left(h\right)\)
Theo đề, ta có: \(\dfrac{33}{x}-\dfrac{62}{x+3}=\dfrac{3}{2}\)
=>\(\dfrac{33x+99-62x}{x^2+3x}=\dfrac{3}{2}\)
=>\(3x^2+9x=2\left(-29x+99\right)\)
=>\(3x^2+9x+58x-198=0\)
=>\(3x^2+67x-198=0\)
=>\(\left[{}\begin{matrix}x\simeq2,6\left(nhận\right)\\x\simeq-24,97\left(loại\right)\end{matrix}\right.\)
Gọi Quãng đường AB là x ( x > 0, km )
Quãng đường khi về là x + 10 km
Thời gian người đó đi quãng đường AB là \(\frac{x}{25}\)giờ
Thời gian người đó đi quãng đường khi về là \(\frac{x+10}{30}\)giờ
Do thời gian về ít hơn thời gian đi là 20 phút = 1/3 giờ
nên ta có phương trình \(\frac{x}{25}-\frac{x+10}{30}=\frac{1}{3}\Leftrightarrow x=100\)
Vậy Quãng đường AB là 100 km
Đổi 20 phút=1/3h
Gọi x là độ dài quãng đường AB ( km,x>0)
Thời gian người đó đi từ A -> B là: \(\dfrac{x}{9}\)(h)
Thời gian người đó đi từ B về A với con đường khác là: \(\dfrac{x+6}{12}\)(h)
Vì thời gian trở về ít hơn thời gian đi 1/3h nên ta có phương trình:
\(\dfrac{x}{9}-\dfrac{x+6}{12}=\dfrac{1}{3}\)
<=>\(\dfrac{4x}{36}-\dfrac{3(x+6)}{36}=\dfrac{12}{36}\)
<=> 4x-3x-18=12
<=> x=30(nhận)
Vậy quãng đường AB dài 30km
Gọi vận tốc của xe máy khi đi từ A đến B là x km/h (x>0)
Vận tốc lúc về là: (km/h)
Thời gian đi: giờ
Thời gian về: giờ
Do thời gian đi nhiều hơn thời gian về là 30 phút =1/2 giờ nên ta có pt:
Gọi độ dài quãng đường AB là x km (x>0)
Thời gian đi từ A đến B là: \(\dfrac{x}{12}\) giờ
Thời gian từ B về A là: \(\dfrac{x}{10}\) giờ
Do thời gian về nhiều hơn thời gian đi là 45 phút =3/4 giờ nên ta có pt:
\(\dfrac{x}{10}-\dfrac{x}{12}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{60}=\dfrac{3}{4}\)
\(\Leftrightarrow x=45\) (km)
Gọi \(x\left(km\right)\) là độ dài quãng đường ab \(\left(x>0\right)\)
Ta có : \(t=\dfrac{s}{v}\)
Đổi \(45p=0,75h\)
Theo đề bài, ta có pt:
\(\dfrac{18}{x}+\dfrac{15}{x}=0,75\)
\(\Leftrightarrow\dfrac{33}{x}=0,75\)
\(\Leftrightarrow x=44\left(tmdk\right)\)
Vậy quãng đường ab dài \(44km\)
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi \(x\left(km/h\right)\) là vận tốc lúc đi \(\left(x>0\right)\)
Vận tốc lúc về là: \(x+3\left(km/h\right)\)
Thời gian đi là: \(\dfrac{33}{x}\left(h\right)\)
Thời gian về là: \(\dfrac{62}{x+3}\left(h\right)\)
Đổi: 1 giờ 30 phút = 1,5 giờ
Do thời gian đi nhiều hơn thời gian về 1 giờ 30 phút nên ta có:
\(\dfrac{33}{x}-\dfrac{62}{x+3}=1,5\)
\(\Leftrightarrow\dfrac{33\left(x+3\right)}{x\left(x+3\right)}-\dfrac{62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{33x+99-62x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=1,5\)
\(\Leftrightarrow\dfrac{99-29x}{x\left(x+3\right)}=\dfrac{3}{2}\)
\(\Leftrightarrow3x^2+9x=198-58x\)
\(\Leftrightarrow3x^2+67x-198=0\)
\(\Leftrightarrow x\approx3\left(km/h\right)\left(tm\right)\)
Gọi vận tốc lúc đi là x
=>vận tốc lúc về là x+3
Theo đề, ta có: \(\dfrac{33}{x}-\dfrac{62}{x+3}=\dfrac{3}{2}\)
=>\(\dfrac{33x+99-62x}{x\left(x+3\right)}=\dfrac{3}{2}\)
=>3(x^2+3x)=2(-29x+99)
=>3x^2+6x+58x-198=0
=>3x^2+64x-198=0
=>\(\left[{}\begin{matrix}x\simeq2,74\left(nhận\right)\\x\simeq-24,07\left(loại\right)\end{matrix}\right.\)