Biết 2x+3y=1tìm GTNN của biểu thức:
A=8x^3+27y^3+2x^2+9y^2+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=8x^3+27y^3+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)
\(=4x^2-6xy+9y^2+4x^2+9y^2+5\)
Áp dụng BĐT AM-GM có:
\(1\ge2.\sqrt{6xy}\)
\(\Leftrightarrow xy\le\frac{1}{24}\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
Áp dụng BĐT Cauchy-schwarz ta có:
\(M\ge\frac{2.\left(2x+3y\right)^2}{2}-6xy+5\ge\frac{2}{2}-\frac{6.1}{24}+5=6.25\)
Dấu " = " xảy ra <=> 2x=3y <=> x=0,25 y=1/6
KL:.....................................................................
Đặt bthuc = A nhé
ĐKXĐ : \(2x\ne3y\)
\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)
\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)
\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)
Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3
a) (1 - 2x) (2x + 1) = 1 - 4x2 __ hằng đẳng thức số 3 (A + B) (A - B) = A2 - B2 (ở đây A = 1 , B = 2x)
câu b) có sai đề ko bn
Ta có : x2 + 3x
= x2 + \(2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
Bài 1:
\(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)
Vậy \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)
\(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)
Vậy \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)
\(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)
Vậy \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)
Bài 3:
a) \(x^2+12x+39=\left(x+6\right)^2+3>0\)
b) \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)
a.
\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)
\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)
\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)
b.
Đặt \(x-1=t\Rightarrow x=t+1\)
\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)
\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)
\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)
Dấu \("="\Leftrightarrow x=2\)
1 ) a ) \(A=53^2+106.47+47^2=53^2+2.53.47+47^2=\left(53+47\right)^2=100^2=10000\)
b ) Sai đề
c ) \(C=50^2-49^2+48^2-47^2+...+2^2-1^2\)
\(=\left(50-49\right)\left(50+49\right)+\left(49-48\right)\left(49+48\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=50+49+48+47+...+2+1\)
\(=\dfrac{50.51}{2}\)
\(=1275\)
2 ) a ) \(\left(x+3y\right)\left(x^2-3xy+y^2\right)=x^3+27y^3\)
b ) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
a) 532 - 106.47+ 472 hả cậu
Nếu thế thì : A = 532 + 2.53.47 + 472
A = ( 53+47 ) 2 = 1002 =10000
Ta thấy \(8x^3+27y^3\)
\(=\left(2x\right)^3+\left(3y\right)^3\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
\(=4x^2-6xy+9y^2\)
Thế thì \(A=6x^2-6xy+18y^2+5\)
Rồi lại thay \(x=\dfrac{1-3y}{2}\) vào A thôi.