Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x-2=2x-3
3x=2x-1
Bớt mỗi vế 2x
x=-1
b)3-4y+24+6y=y+27+3y
3-4y+6y=y+3+3y
3-4y+3y=y+3
<=> y=0
c.7-2x=22-3x
2x=15-3x
15=x
d.8x-3=5x+12
3x-3=12
3x=15
x=5
câu e hình như bạn thiếu đề
f)x+2x+3x-19=3x+5
6x-19=3x+5
3x-19=5
3x=24
<=>x=8
g)11=8x-3=5x-3+x
11=8x-3
11=6x-3
<=> x không tồn tại
h)4-2x+15=9x+4x-2x
4-2x+15=11x
<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé
T
Ngập mặt ~
Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.
a/ 3x - 2 = 2x - 3
<=> 3x - 2 - 2x + 3 = 0
<=> x + 1 = 0
<=> x = -1
b/ 3 - 4y + 24 + 6y = y + 27 + 3y
<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0
<=> -2y = 0
<=> y = 0
a) \(3x-2=2x-3\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b) \(3-4y+24+6y=y+27+3y\)
\(\Leftrightarrow-2y=0\Leftrightarrow y=0\)
c) \(7-2x=22-3x\)
\(\Leftrightarrow x-15=0\)
\(\Leftrightarrow x=15\)
d) \(8x-3=5x+12\)
\(\Leftrightarrow3x-15=0\Leftrightarrow x=5\)
Bài 2 :
Câu a : \(y\left(y^3+y^2-y-2\right)-\left(y^2-2\right)\left(y^2+y+1\right)\)
\(=y^4+y^3-y^2-2y-y^4-y^3-y^2+2y^2+2y+2\)
\(=2\) \(\Rightarrow\) ko phụ thuộc vào biến .
Câu b : \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2\)
\(=29\Rightarrow\) ko thuộc vào biến
Câu c : \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)
\(=3x^2+15x-3x^2+3x-18x+18\)
\(=18\) \(\Rightarrow\) ko thuộc vào biến
Câu d : \(\left(2x+6\right)\left(4x^2-12x+36\right)-8x^3+5\)
\(=8x^3-24x^2+72x+24x^2-72x+216-8x^3+5\)
\(=221\) \(\Rightarrow\) không thuộc vào biến
câu 1) a) \(\left(x^2+2xy+y^2\right)\left(x+y\right)=\left(x+y\right)^2\left(x+y\right)=\left(x+y\right)^3\)
b) \(y\left(y^3+y^2-3y-2\right)+\left(y^2-2\right)\left(y^2+y-1\right)\)
\(=y^4+y^3-3y^2-2y+y^4+y^3-y^2-2y^2-2y+2\)
\(=2y^4+2y^3-6y^2-4y+2=2y\left(y^3+y^2-3y-2\right)+2\)
\(=2y\left(y+2\right)\left(y^2-y-1\right)+2=2\left(y^2+2y\right)\left(y^2-y-1\right)+2\)
\(=2\left(y^2+2y\right)\left(y^2-y-1+1\right)=2\left(y^2+2y\right)\left(y^2-y\right)\)
c) \(6x^2-\left(2x+5\right)\left(3x-2\right)=6x^2-\left(6x^2-4x+15x-10\right)\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-11x+10\)
d) \(\left(2x-1\right)\left(3x+1\right)+\left(3x+4\right)\left(3-2x\right)\)
\(\)\(=6x^2+2x-3x-1+9x-6x^2+12-8x=11\)
e) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)\)
\(=21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)\)
\(21x-15x^2-35+25x-10x+15x^2-4+6x=42x-39\)
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)
\(a.\left(8x^4-4x^3+x^2\right):2x^2=4x^2-2x+\frac{1}{2}\)
\(b.\left(2x^4-x^3+3x^2\right):\left(-\frac{1}{3x^2}\right)=-6x^6+3x^5-9x^4\)
\(c.\left(-18x^3y^5+12x^2y^2-6xy^3\right):6xy=-3x^2y^4+2xy-y^2\)
\(d.\left(\frac{3}{4x^3y^6}+\frac{6}{5x^4y^5}-\frac{9}{10x^5y}\right):-\frac{3}{5x^3y}=-\frac{5}{4y^5}-\frac{2}{xy^4}-\frac{3}{2x^2}\)
Bài 2:
a) Thay x=-2 vào phương trình 2x+k=x-1, ta được
2*(-2)+k=-2-1
⇔-4+k=-3
⇔k=-3-(-4)=-3+4=1
Vậy: Khi k=1 thì phương trình 2x+k=x-1 có nghiệm là x=-2
b) Thay x=2 vào phương trình (2x+1)(9x+2k)-5(x+2)=40, ta được
(2*2+1)*(9*2+2k)-5*(2+2)=40
⇔5*(18+2k)-20=40
⇔5*(18+2k)=40+20
⇔18+2k=12
⇔2k=12-18=-6
⇔k=-3
Vậy: khi k=-3 thì phương trình (2x+1)(9x+2k)-5(x+2)=40 có nghiệm là x=2
c) Thay x=1 vào phương trình 2(2x+1)+18=3(x+2)(2x+k), ta được
2*(2*1+1)+18=3*(1+2)*(2*1+k)
⇔2*3+18=3*3*(2+k)
⇔24=9*(2+k)
⇔\(2+k=\frac{24}{9}=\frac{8}{3}\)
\(\Leftrightarrow k=\frac{8}{3}-2=\frac{2}{3}\)
Vậy: khi \(k=\frac{2}{3}\) thì phương trình 2(2x+1)+18=3(x+2)(2x+k) có nghiệm là x=1
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
im chưa học\
Ta có : x2 + 3x
= x2 + \(2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)
\(=\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\)