Cho hình chữ nhật ABCD với AD=3AB lấy M là trên BC, đường thẳng AM cắt đường thẳng CD tại P, đường thẳng EF\(\perp\)AM cắt AB tại E, CD tại F, đường phân giác của ∠DAM cắt CD tại K.
a) C/M: EF=DK+3BM
b) C/M: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{9}{AP^2}\)
b: Qua A kẻ đường thẳng vuông góc với AP cắt BC tại N
Xét ΔABN và ΔADP có
góc B=góc D=90 độ
góc BAN=góc DAP
=>ΔABN đồng dạng với ΔADP
=>AB/AD=AN/AP=1/3
=>AN=1/3AP
ΔANM vuông tại N có AB là đường cao
nen 1/AB^2=1/AM^2+1/AN^2=1/AM^2+9/AP^2