Cho hình chữ nhật ABCD. Vẽ đường cao AH của tam giác ABD.
a) Chứng minh Δ AHD đồng dạng với Δ BAD
b) Chứng minh \(BC^2\) = DH.DB; \(AH^2=HD.HB\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
góc ADH chung
=>ΔAHD đồng dạng với ΔBAD
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a) Xét hình chữ nhật ABCD có:
AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)
Xét tam giác AHB và tam giác BCD có:
\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BCD}=90^0\)
=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)
b) Xét tam giác ADH và tam giác BDA có:
\(\widehat{ADB}\) chung
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)
c) Xét tam giác BDC vuông tại C có:
\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Xét tam giác ADH vuông tại H có:
\(AD^2=AH^2+DH^2\)( định lý Pytago)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a) và (b không nhìn rõ
a)Xét tam giác HBA và tam giác ABD có:
góc AHB=góc DAB(=90độ)
góc B chung
=> tam giác HBA đồng dạng tam giác ABD (g-g)
b) xét tam giác HDA và tam giác ADB có
góc AHD =góc DAB(=90độ)
góc D chung
=> tam giác HDA đồng dạng tam giác ADB (g-g)
=>AD/BD=HD/BD=>AD^2=DH.BD
c)vì ABCD là hcn=> BC=AD=6cm
tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)
=>BD^2=6^2+8^2
=>BD=10(cm)
Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)
tam giác ADH vuông tại H
=>Ad^2=AH^2+HD^2(ĐL Pytago)
=>6^2=AH^2+3,6^2
=>AH=4.8(cm)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có
góc ADH chung
Do đó: ΔAHD\(\sim\)ΔBAD
Áp dụng định lý PI ta go vào tam giác ADB có :
\(DB=\sqrt{AB^2+AD^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
b.\(\text{Xét 2 tam giác ADH và tam giác ADB có:}\)
\(\widehat{A}=\widehat{H}=90^0\)
\(\widehat{D}\)\(\text{chung}\)
\(\Rightarrow\Delta ADH~\Delta ADB\left(gg\right)\)
b.\(\Rightarrow\frac{AD}{AD}=\frac{DH}{DB}\)
Hay \(\frac{AD}{DH}=\frac{DB}{AD}\)
\(\Rightarrow AD^2=DH.DB\)
c. \(\text{Xét 2 tam giác ABD và tam giác CDB có:}\)
\(\widehat{A}=\widehat{C}=90^0\)
\(\widehat{B_1}=\widehat{D_1}\left(slt\right)\)
\(\Rightarrow\Delta ABD~\Delta CDB\left(gg\right)\)
mà \(\Delta ADB~\Delta ADH\left(a\right)\)
\(\Rightarrow\Delta AHD~\Delta BCD\)
d. \(\Rightarrow\frac{AH}{BC}=\frac{HD}{CD}=\frac{AD}{BD}\)
\(\Rightarrow\frac{AH}{6}=\frac{DH}{8}=\frac{6}{10}\)
\(\Rightarrow AH=\frac{6.6}{10}=3,6\left(cm\right)\)
\(DH=\frac{6.8}{10}=4,8\left(cm\right)\)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
Lời giải:
a) Xét tam giác $AHD$ và $BAD$ có:
$\widehat{D}$ chung
$\widehat{AHD}=\widehat{BAD}=90^0$
$\Rightarrow \triangle AHD\sim \triangle BAD$ (g.g)
b)
Từ tam giác đồng dạng phần a suy ra: $\frac{AD}{HD}=\frac{BD}{AD}$
$\Rightarrow AD^2=DH.DB$. Mà $AD=BC$ nên $BC^2=DH.DB$
Xét tam giác $AHD$ và $BHA$ có:
$\widehat{AHD}=\widehat{BHA}=90^0$
$\widehat{HAD}=\widehat{HBA}$ (cùng phụ $\widehat{HAB}$)
$\Rightarrow \triangle AHD\sim \triangle BHA$ (g.g)
$\Rightarrow \frac{AH}{HD}=\frac{BH}{HA}\Rightarrow AH^2=HD.BH$
Ta có đpcm.
Hình vẽ: