K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cΔCDAαΔCBD⇒CDBC=ADBD=ACCD⇒ACBC=CD2BC2

Theo hệ thức lượng trong tam giác vuông ta có: AHBH=HD2HB2

Cần chứng minh: CD2BC2=HD2HB2⇔CDBC=HDHB

Mà CDBC=ADBD. Cần cm: ADBD=HDHB

Mà ΔADBαΔHDB(g.g) nên ta có đpcm

Qua điểm nằm ngoài đường tròn $(O)$, vẽ tiếp tuyến $CD$ với đường tròn $(O)$ ( $D$ là tiếp điểm). Đường thẳng $CO$ cắt đường tròn tại hai điểm $A&# - Hình học - Diễn đàn Toán học

11 tháng 2 2019

AI GIẢI CHI TIẾT DÙM MK CÁI

16 tháng 2 2020

A B O C D E H

17 tháng 2 2020

a, Ap dung tinh chat 2 tiep tuyen cat nhau => \(CD=CE\Rightarrow\Delta CDE\) can

b, Co \(\widehat{CDO}=\widehat{CEO}=90^0\Rightarrow\)

a: Xét tứ giác OBKC có \(\widehat{OBK}+\widehat{OCK}=90^0+90^0=180^0\)

nên OBKC là tứ giác nội tiếp

=>O,B,K,C cùng thuộc một đường tròn

b: Ta có: ΔOMN cân tại O

mà OA là đường cao

nên OA là phân giác của góc MON

Xét ΔMOA và ΔNOA có

OM=ON

\(\widehat{MOA}=\widehat{NOA}\)

OA chung

Do đó: ΔMOA=ΔNOA

=>\(\widehat{OMA}=\widehat{ONA}\)

=>\(\widehat{ONA}=90^0\)

=>AN là tiếp tuyến của (O)

c: Xét (O) có

KB,KC là tiếp tuyến

Do đó: KB=KC

=>K nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OK là đường trung trực của BC

=>OK\(\perp\)BC tại I và I là trung điểm của BC

Xét ΔOBK vuông tại B có BI là đường cao

nên \(OI\cdot OK=OB^2\)

=>\(OI\cdot OK=ON^2\left(3\right)\)

d: Xét ΔNOA vuông tại N có NH là đường cao

nên \(OH\cdot OA=ON^2\left(4\right)\)

Từ (3) và (4) suy ra \(OI\cdot OK=OH\cdot OA\)

=>\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)

Xét ΔOIA và ΔOHK có

\(\dfrac{OI}{OH}=\dfrac{OA}{OK}\)

\(\widehat{HOK}\) chung

Do đó: ΔOIA đồng dạng với ΔOHK

=>\(\widehat{OIA}=\widehat{OHK}\)

=>\(\widehat{OHK}=90^0\)

mà \(\widehat{OHM}=90^0\)

nên K,H,M thẳng hàng

mà M,H,N thẳng hàng

nên K,M,N thẳng hàng

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO

a; Xét ΔOBD có OB=OD

nên ΔOBD cân tại O

Suy ra: \(\widehat{DBO}=\widehat{ODB}\)

mà \(\widehat{ODB}=\widehat{ABC}\)

nên \(\widehat{DBO}=\widehat{ABC}\)

 

29 tháng 1 2022

có phần b ko

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)