K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

BĐVT:\(\left(a^2-b^2\right)^2+\left(2ab\right)^2=a^4-2a^2b^2+b^4+4a^2b^2\)

                                                      \(=a^4+2a^2b^2+b^4\)

            Áp dụng hằng đẳng thức \(a^2+2ab+b^2=\left(a+b\right)^2\) ta đc:

                                                       \(=\left(a^2+b^2\right)^2\left(BVP\right)\left(đpcm\right)\)

                                      

26 tháng 6 2017

thanks

26 tháng 7 2017

(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

22 tháng 7 2019

a2 + b2 = ( a+ b ) 2 - 2ab

VP: ( a+ b ) 2 - 2ab

= a2 + 2ab + b2 - 2ab

= a2 + b2 = VT 

Vậy a2 + b2 = ( a+ b ) 2 - 2ab                  ( Đpcm )

16 tháng 1 2019

( a - b) . ( a- b )

= a2 - ab - ab + b2

= a2 - 2ab + b2

16 tháng 1 2019

Bạn có thể làm chi tiết hơn ko?

5 tháng 9 2021

Dấu BĐT bị ngược, sửa đề: \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

Đặt \(b^2=x\left(x>0\right)\Rightarrow a+x=2ax\).

Khi đó ta cần chứng minh:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Áp dụng BĐT AM-GM:

\(\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\)

\(\le\dfrac{1}{2a^2x+2ax^2}+\dfrac{1}{2ax^2+2a^2x}\)

\(=\dfrac{2}{2ax\left(a+x\right)}\)

\(=\dfrac{1}{ax\left(a+x\right)}\)

\(=\dfrac{1}{2a^2x^2}\)

Ta thấy: \(a+x\ge2\sqrt{ax}\)

\(\Leftrightarrow2ax\ge2\sqrt{ax}\)

\(\Leftrightarrow ax-\sqrt{ax}\ge0\)

\(\Leftrightarrow\sqrt{ax}\left(\sqrt{ax}-1\right)\ge0\)

\(\Leftrightarrow\sqrt{ax}\ge1\)

\(\Rightarrow ax\ge1\)

Khi đó: \(\dfrac{1}{2a^2x^2}\le\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a^4+x^2+2ax^2}+\dfrac{1}{a^2+x^4+2a^2x}\le\dfrac{1}{2}\)

Hay \(\dfrac{1}{a^4+b^4+2ab^4}+\dfrac{1}{a^2+b^4+2a^2b^2}\le\dfrac{1}{2}\).

24 tháng 8 2018

Ta có :

\(\left(a+b\right)^2\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=a^2+ab+ba+b^2\)

\(=a^2+2ab+b^2\)

Vậy \(\left(a+b\right)^2=a^2+2ab+b^2\)

24 tháng 8 2018

Ta có:

a2+2ab+b2

=(a2+ab)+(b2+ab)

=a(a+b)+b(a+b)

=(a+b)(a+b)

=(a+b)2

24 tháng 8 2018

\(\left(a+b\right)^2=a^2+2ab+b^2\) (áp dụng hằng đẳng thức bình phương của một tổng)

\(\Rightarrowđpcm\)

17 tháng 8 2016

(a+b)(a^2-ab+b^2)=nhân đa thức với đa thức chắc bạn đã biết 
a^3+b^3=a^3+a^2b-a^2b+ab^2-ab^2+b^3 chắc bạn biết thêm, bớt 
=a^2(a+b)-ab(a+b)+b^2(a+b) 
=(a+b)(a^2-ab+b^2)

28 tháng 9 2019

a. ĐK: a, b, c khác 0.

 \(\frac{a^2+b^2-c^2}{2ab}+\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}=1\)

\(\Leftrightarrow\left[\frac{a^2+b^2-c^2}{2ab}-1\right]+\left[\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2-\left(a^2-b^2\right)}{b}+\frac{c^2+\left(a^2-b^2\right)}{a}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{1}{2c}\left[\frac{c^2\left(a+b\right)-\left(a^2-b^2\right)\left(a-b\right)}{ab}\right]=0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2-c^2}{2ab}+\frac{\left(a+b\right)\left(c^2-\left(a-b\right)^2\right)}{2abc}=0\)

\(\Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left(1-\frac{a+b}{c}\right)=0\)

\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)\left(c-a-b\right)=0\)

\(\Leftrightarrow a=b+c\)hoặc \(b=a+c\)hoặc \(c=a+b\).

b) Không mất tính tổng quả. G/s: a = b + c

Khi đó ta có:

\(\frac{a^2+b^2-c^2}{2ab}=\frac{\left(b+c\right)^2+b^2-c^2}{2\left(b+c\right)b}=1\)

\(\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-\left(b+c\right)^2}{2bc}=-1\)

\(\frac{c^2+a^2-b^2}{2ca}=\frac{c^2+\left(b+c\right)^2-b^2}{2\left(b+c\right)c}=1\)

=> Điều phải chứng minh.