K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b)

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p+ 1 = 4(25k2 ± 10k + 1) + 1= 4.25k± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.

16 tháng 12 2020

* p = 2 thì 4p^2 + 1 = 25 không là SNT

* p = 3 thì 6p^2 + 1 = 55 không là SNT

* p = 5 thì 4p^2 + 1=101 và 6p^2 + 1 = 151 là SNT

Vậy p = 5 thỏa điều kiện đề bài.

* P > 5 => p = 5k ±1, hoặc p = 5k ± 2.

Khi: p = 5k ± 1thì

4p^2 + 1 = 4(25k^2 ± 10k + 1) + 1= 4.25k^2 ± 4.10k + 5 > 5 và chia hết cho 5

Khi p = 5k ± 2 thì:

6k^2 + 1 =6(25k^2 ± 10k + 4) + 1 = 6.25k^2 ± 6.10k + 25 > 5 và chia hết cho 5

Vậy khi p>5 thì 4p^2+1 và 6p^2+1 không đồng thời là SNT.

=> p = 5 là SNT cần tìm.

LM
Lê Minh Vũ
CTVHS VIP
24 tháng 9 2021

\(a)\)Mọi số tự nhiên lớn hơn \(3\)khi chia cho 6 chỉ có thể xảy ra một trong \(6\)trường hợp: dư \(0\), dư \(2\), dư \(3\), dư \(4\), dư \(5\)

+) Nếu p chia \(6\)dư \(0\)thì \(p=6k\Rightarrow p\)là hơp số

+) Nếu p chia cho \(6\)\(1\) thì \(p=6k+1\)

+) Nếu p chia cho \(6\)\(2\) thì \(p=6k+2\Rightarrow p\)là hợp số.

+) Nếu p chia cho \(6\)\(3\) thì\(p=6k+3\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(4\) thì \(p=6k+4\Rightarrow p\) là hợp số.

+) Nếu p chia cho \(6\)\(5\) thì \(p=6k+5\)

Vậy mọi số nguyên tố lớn hơn \(3\) chia cho \(6\) thì chỉ có thể dư \(1\) hoặc dư \(5\) tức là :

\(p=6k+1\) hoặc \(p=6k+5\)

b) Nếu p có dạng \(6k+1\) thì \(8p+1=8\left(6k+1\right)+1=48k+9⋮3\) ; số này là hợp số.

Vậy p không có dạng \(6k+1\) mà p có dạng \(6k+5\), khi đó \(4p+1=4\left(6k+5\right)+1=24k+21⋮3\) . Rõ ràng \(4p+1\)là hợp số.

2 tháng 11 2017

a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên  p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
 

2 tháng 11 2017

b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì  p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9.  Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1.  Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.

14 tháng 11 2017

a, Đề phải là cm p^2-1 ko nguyên tố

Vì p nguyên tố > 3 => p ko chia hết cho 3 => p^2:3 dư 1 => p^2-1 chia hết cho 3

Mà p nguyên tố > 3 => p^2-1 > 3

=> p^2-1 là hợp số

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

5 tháng 12 2023

Nếu p = 3 ta có: 2p2 + 1 = 2.(3)2 + 1 = 19 (loại)

Nếu p = 3k + 1 ta có: p2 \(\equiv\) 1 (mod 3) (tc của số chính phương)

                               2.p2 \(\equiv\) 2 (mod 3)

                          2p2 + 1 ⋮ 3 ⇒ 2p2 + 1 là hợp số thỏa mãn

Nếu p = 3k + 2 ta có: p2 \(\equiv\)  1 (mod 3) (tc của số chính phương)

                                2.p2 \(\equiv\) 2 (mod 3)

                        ⇒ 2p2 + 1  ⋮ 3 (mod 3)  

                        ⇒ 2p2 + 1 là hợp số

         Vậy tất cả các số nguyên tố khác 3 đều thỏa mãn 

         2p2 + 1 là hợp số