1+2+3+...+2009+2010x{1176x72+15x1176-1176x87}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)3x4-5x3y+6x2-10xy+2
=(3x4-5x3y)+(6x2-10xy)+2
=x3(3x-5y)+2x(3x-5y)+2
=x3.0+2x.0+2
=0+0+2
=2
2) x5-2010x4+2010x3-2010x2+2010x-2020
=x5-(2009+1)x4+(2009+1)x3-(2009+1)x2+(2009+1)x-2009-11
=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-x-11
=x5-x5-x4+x4+x3-x3-x2+x2+x-x-11
=-11
Thay 2010 = x + 1 vào P ( x ),ta có :
\(^{x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1}\)
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + ... + x3 + x2 - x2 + x - 1
= x + 1
= 2009 + 1
= 2010
Thay 2010 = x+ 1 vào P( x) ,có :
\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1\)
= \(x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2+x-1\)
= x+1
= 2009 + 1
= 2010
Ta có: x = 2011 \(\Rightarrow\) 2010 = x - 1
\(A=x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1\)
\(=2012.\)
x=2011
=> 2010= x-1
A = x^2011- (x-1) x^2010- (x-1).x^2009-.....- (x-1).x+1
= x^2011-x^2011+x^2010- x^2010+x^2009..x^2.-x^2+x+1
= x+1
=(x-1)+2= 2010+2=2012
\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\right)\)
\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2010}\right)\)
\(=\dfrac{-1}{2010}-1+\dfrac{1}{2010}=-1\)
a) \(S=1+2+2^2+...+2^{100}\)
\(2S=2+2^2+2^3+...+2^{101}\)
\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(S=2^{101}-1\)
b) \(X=2^{2012}-2^{2011}-...-2-1\)
\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)
Đặt \(X=2^{2012}-Y\)
Ta có :
\(Y=1+2+...+2^{2011}\)
\(2Y=2+2^2+...+2^{2012}\)
\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)
\(Y=2^{2012}-1\)
\(\Rightarrow X=2^{2012}-2^{2012}+1\)
\(\Rightarrow X=1\)
\(\Rightarrow2010X=2010\)
\(x.\left(x-2009\right)-2010x+2009.2010=0\)
\(x.\left(x-2009\right)-2010\left(x-2009\right)=0\)
\(\left(x-2009\right)\left(x-2010\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2009=0\\x-2010=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2009\\x=2010\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=2009\\x=2010\end{cases}}\)
\(A=\frac{4047991-2010\times2009}{4050000-2011\times2009}=\frac{4047991+2009-2009-2010\times2009}{4050000-2011\times2009}\)
\(=\frac{4050000-2011\times2009}{4050000-2011\times2009}=1\)
\(1+2+3+...+2009+2010\cdot\left(1176\cdot72+15\cdot1176-1176\cdot87\right)\)
\(=1+2++...+2010\cdot\left(1176\cdot\left(72+15-87\right)\right)\)
\(=\left(1+2+3+...+2010\right)\cdot0\)
\(=0\)
\(1+2+3+...+2009+2010\times\left(1176\times72+15\times1176-1176\times87\right)\)
Đặt \(1+2+3+...+2009+2010\)là \(A\); \(\left(1176\times72+15\times1176-1176\times87\right)\)là \(B\).Ta có :
Số số hạng của \(A\)là: \(\left(2010-1\right)\div1+1=2010\)
Tổng của \(A\)là: \(\left(1+2010\right).2010\div2=2021055\)
\(B=1176\times72+15\times1176-1176\times87\)
\(B=1176\times\left(72+15-87\right)\)
\(B=1176\times0\)
\(B=0\)
\(\Rightarrow1+2+3+...+2009+2010\times\left(1176\times72+15\times1176-1176\times87\right)\)\(=2021055\times0\)
\(=0\)