Tìm GTNN
A=\(x^2+y^2-x+6y+10\)
Ai nhanh nhất và đúng mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
PT $\Leftrightarrow (x^2+2xy+y^2)-(y^2+6y+9)=0$
$\Leftrightarrow (x+y)^2-(y+3)^2=0$
$\Leftrightarrow (x+y-y-3)(x+y+y+3)=0$
$\Leftrightarrow (x-3)(x+2y+3)=0$
$\Rightarrow x-3=0$ hoặc $x+2y+3=0$
Nếu $x-3=0\Leftrightarrow x=3$. Vậy $(x,y)=(3,a)$ với $a$ nguyên bất kỳ.
Nếu $x+2y+3=0\Leftrightarrow x=-2y-3$ lẻ. Vậy $(x,y)=(-2a-3,a)$ với $a$ nguyên bất kỳ.
2.
PT $\Leftrightarrow x^2=(y^2+2y+1)+12$
$\Leftrightarrow x^2=(y+1)^2+12\Leftrightarrow x^2-(y+1)^2=12$
$\Leftrightarrow (x-y-1)(x+y+1)=12$
Vì $x-y-1, x+y+1$ là số nguyên và cùng tính chẵn lẻ nên xảy ra các TH sau:
TH1: $x-y-1=2; x+y+1=6\Rightarrow x=4; y=1$
TH2: $x-y-1=6; x+y+1=2\Rightarrow x=4; y=-3$
TH3: $x-y-1=-2; x+y+1=-6\Rightarrow x=-4; y=-3$
TH4: $x-y-1=-6; x+y+1=-2\Rightarrow x=-4; y=1$
bài 1: với x,y,z thuộc N; x<y<z ta có: 2^x + 2^y + 2^z = 2336
=> 2^z <2336
=> z nhỏ hơn hoăc 11 (1)
ta có: 2^z + 2^z + 2^z > 2^x + 2^y + 2^z
=> 3.2^z > 2336
=> 2^z nhỏ hơn hoặc = 778
=> z nhỏ hơn hoặc = 10 (2)
từ (1) và (2) suy ra z = {10; 11}
TH1: z = 10
=> 2^x + 2^y = 1312
=> 2^y < 1312
=> y nhỏ hơn hoặc = 10 (3)
ta có 2.2^y > 2^x + 2^y
=> 2.2^y > 1312
=> 2^y > 656
=> y nhỏ hơn hoặc = 10 (4)
từ (3) và (4) => y = 10 mà z = 10 ( LOẠI)
TH2: z = 11
=> 2^x + 2^y = 288
=> 2^y < 288
=> y nhỏ hơn hoặc = 8 (5)
ta có 2.2^y > 2^x + 2^y
=>2.2^y > 288
=> 2^y > 144
=> y nhỏ hơn hoặc bằng 8 (6)
từ (5) và (6) => y = 8
nhỏ hơn hoặc= 2^x + 2^8 = 288
=> 2^x = 32
=> x= 5 (chọn)
KL: vậy x = 5; y = 8; z = 11.
Tham khảo: https://olm.vn/hoi-dap/detail/103429897807.html
hok tốt!!
Ta có : x2 – 2x + 1 = 6y2 - 2x + 2
\(\Rightarrow\) x2 – 1 = 6y2 \(\Rightarrow\) 6y2 = ( x - 1 ) . ( x + 1 ) chia hết cho 2 , do 6y2 chia hết cho 2 .
Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) cùng chẵn hoặc cùng lẻ .
Vậy ( x - 1 ) và ( x + 1 ) cùng chẵn \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) là hai số chẵn liên tiếp .
( x - 1 ) . ( x + 1 ) chia hết cho 8 \(\Rightarrow\) 6y2 chia hết cho 8 \(\Rightarrow\) 3y2 chia hết cho 4 \(\Rightarrow\) y2 chia hết cho 4 \(\Rightarrow\) y chia hết cho 2
y = 2 ( y là số nguyên tố )
Tìm được x = 5 .
Ta có:\(A=x^2+y^2-x+6y+10\)
\(\Leftrightarrow A=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9-\frac{33}{4}\)
\(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy Min A = \(-\frac{33}{4}\) khi \(x=\frac{1}{2};y=-3\)
ta có x^2 >= 0
=> x^2-x >=0
y^2 >= 0
=>y^2 +6y >= 0
=> x^2 + y^2-x+6y>=0
=>A>=10
Vậy Gtnn là 10