K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Sao đề lạ thế hai Bt cùng giá trị sao làm được

10 tháng 5 2017

ừ nó v đấy chép nguyên văn luôn

24 tháng 6 2017

Ta có:\(A=x^2+y^2-x+6y+10\)

   \(\Leftrightarrow A=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9-\frac{33}{4}\)

    \(\Leftrightarrow A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\)

             Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\)

                      \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2-\frac{33}{4}\ge-\frac{33}{4}\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

       Vậy Min A = \(-\frac{33}{4}\) khi \(x=\frac{1}{2};y=-3\)

24 tháng 6 2017

ta có x^2 >= 0

=> x^2-x >=0

y^2 >= 0

=>y^2 +6y >= 0

=> x^2 + y^2-x+6y>=0

=>A>=10

Vậy Gtnn là 10

20 tháng 7 2017

lỡ tay bấm -_-; tiếp

F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)

Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)

=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)

19 tháng 7 2017

bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi

8 tháng 7 2018

( x - 5).(x + 5)- (x - 5)2

= ( x - 5 ).(x2 + 10x + 25 - x2 + 10x - 25)

= ( x - 5 ).20

= 20x - 100

14 tháng 7 2016

a) (x-y)2-(x2-2xy)

=y2-2xy+x2-x2+2xy

=y2-(-2xy+2xy)+(x2-x2)

=y2

b)(x-y)2+x2+2xy-(x+y)2

=y2-2xy+x2+x2+2xy-y2-2xy-x2

=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)

=x2-2xy

30 tháng 4 2016

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

30 tháng 4 2016

bạn vào fx viết lại đề đi nha, sai đề rùi

6x(x-4)+2x(2-3x)=-25

<=> 6x2-24x+4x-6x2=-25

<=> -20x=-25

<=> x=\(\frac{5}{4}\)

6x(x - 4) + 2x(2 - 3x) = -25

6x2 - 24 + 4x - 6x2 = -25

4x - 24 = -25

4x = -25 + 24

4x = -1

x = -1 : 4 = -0,25

14 tháng 5 2017

P(x^2+x+1)=x^2-x+1

=>Px^2+Px+P-x^2+x-1=0

=>(Px^2-x^2)+(Px+x)+(P-1)=0

=>x^2(P-1)+x(P+1)+(P-1)=0 (1) 

coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm

Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3

=(P-3)(1-3P)  >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3