Giúp mình với A=1+ 2 mũ 2+ 2 mũ 3+...+ 2 mũ 10 . Cảm ơn trc ạ ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2B=2\cdot\left(2^{100}-2^{99}+2^{98}-...+2^2-2\right)\)
\(2B=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(2B+B=2^{101}-2^{100}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)
\(3B=2^{101}-2\)
\(B=\dfrac{2^{101}-2}{3}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\\ =\left(2^{100}+2^{98}+...+2^2\right)-\left(2^{99}+2^{97}+...+2\right)\\ =\left(2^2+...+2^{98}+2^{100}\right)-\left(2+...+9^{97}+9^{99}\right)\\ =M+N\left(1\right)\)
Xét \(M=2^2+...+2^{98}+2^{100}\\ 4M=2^4+...+2^{100}+2^{102}\\ 4M-M=2^4+...+2^{100}+2^{102}-2^2-...-2^{98}-2^{100}\\ 3M=2^{102}-2^2\\ M=\dfrac{2^{102}-2^2}{3}\left(2\right)\)
Xét \(N=2+...+2^{97}+2^{99}\\ 4N=2^3+...+2^{99}+2^{101}\\ 4N-N=2^3+...+2^{99}+2^{101}-2-...-2^{97}-2^{99}\\ 3N=2^{101}-2\\ N=\dfrac{2^{101}-2}{3}\left(3\right)\)
Từ `(1);(2)` và `(3)` suy ra
\(B=\dfrac{2^{102}-2^2}{3}-\dfrac{2^{101}-2}{3}\\ =\dfrac{2^{102}-2^2-2^{101}+2}{3}=\dfrac{2^{101}\left(2-1\right)-2}{3}\\ =\dfrac{2^{101}-2}{3}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{59}}.\)
\(E=2E-E=1-\frac{1}{2^{60}}\)
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
a) \(4.8^6.2.8^3\)
\(=2^2.\left(2^3\right)^6.2.\left(2^3\right)^3\)
\(=2^2.2^{18}.2.2^9\)
\(=2^{2+18+1+9}\)
\(=2^{30}\)
______
b) \(12^2.2.12^3.6\)
\(=12^2.12^3.2.6\)
\(=12^2.12^3.12\)
\(=12^{2+3+1}\)
\(=12^6\)
c) \(6^3.2.6^4.3\)
\(=6^3.6^4.2.3\)
\(=6^3.6^4.6\)
\(=6^{3+4+1}\)
\(6^8\)
a) \(4\cdot8^6\cdot2\cdot8^3\)
\(=2^2\cdot\left(2^3\right)^6\cdot2\cdot\left(2^3\right)^3\)
\(=2^2\cdot2^{18}\cdot2\cdot2^9\)
\(=2^{30}\)
b) \(12^2\cdot2\cdot12^3\cdot6\)
\(=12^2\cdot12\cdot12^3\)
\(=12^6\)
c) \(6^3\cdot2\cdot6^4\cdot3\)
\(=6^3\cdot6\cdot6^4\)
\(=6^8\)
a) 514 = 52.7= (52)7= 257
321= 33.7= (33)7= 277
Mà 25 < 27
=> 514<321
b) 433= (43)11 = 6411
344= (34)11 = 8111
=> 433<344
c) 2161 > 2160 = (24)40= 1640
Mà 1340< 1640 < 2161
=> 1340<2161
d) 1715= 173.5= (173)5 = 49135
3110= (312)5= 9615
Mà 4913 > 961
=> 1715> 3110
e) 2255 = (25)45 = 3245
3180 = (34)45 = 8145
=> 2255 < 3180
g) 202303 = (2023)101 = (1013.23)101= (1013.8)101= (1012.8.101)101= (1012.808)101
303202 = (3032)101= (32.1012)101= (1012.9) 101
Vì 1012.9 < 1012.808
=> 202303>303202
`A=1+2^2 +2^3 +...+2^10`
`2A=2+2^3 +2^4 +...+2^11`
`A=2+2^3 +2^4 +...+2^11 -1-2^2 -2^3 -...-2^10`
`A=2+2^11 -1-2^2`
`A=2+2048-1-4`
`A=2045`
Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=2+2^3+2^4+...+2^{11}-1-2^2-2^3-...-2^{10}\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{10}-2^{10}\right)+\left(2+2^{11}-1-2^2\right)\)
\(\Rightarrow A=0+0+0+...+2+2^{11}-1-2^2\)
\(\Rightarrow A=2+2^{11}-1-4\)
\(\Rightarrow A=2^{11}-3\)