K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi E là giao của AI với BC

F là giao của AJ với BD

Gọi M là giao của EF và BM

Chọn mp(AFE) có chứa IJ

FE cắt BM tại N

nên \(N\in\left(ABM\right)\cap\left(AFE\right)\)

=>(ABM) giao (AFE)=AN

Gọi giao của AN với IJ là K

=>K là giao của JI với (AMB)

13 tháng 5 2019

Trong mặt phẳng (BCD); IJ cắt CD tại H nên H thuộc (ACD)

Điểm H thuộc IJ m suy ra bốn điểm M; I; J; H  đồng phẳng.

Nên trong mặt phẳng (IJM) , MH cắt IJ tại H và  M H ⊂ I J M .

Mặt khác  M ∈ A C D H ∈ A C D    ⇒    M H ⊂ A C D .

Vậy giao tuyến của 2 mặt phẳng (ACD) và ( IJM) là MH

Chọn D. 

NV
19 tháng 12 2020

Trong mp (ACD), kéo dài IJ cắt CD tại E thì E là giao điểm của CD và (IJK)

25 tháng 10 2023

A B C D M N E O K

Ta có

\(E\in MN\) mà \(MN\in\left(OMN\right)\Rightarrow E\in\left(OMN\right)\)

\(O\in\left(OMN\right)\)

\(\Rightarrow EO\in\left(OMN\right)\)

Ta có

\(E\in BD\) mà \(BD\in\left(BCD\right)\Rightarrow E\in\left(BCD\right)\)

\(O\in\left(BCD\right)\)

\(EO\in\left(BCD\right)\)

Trong (BCD) kéo dài EO cắt CD tại K

=> \(K\in\left(OMN\right);K\in CD\) => K chính là giao của CD với (OMN)

17 tháng 12 2019

26 tháng 2 2017

27 tháng 9 2019

11 tháng 6 2019