Tìm số tự nhiên x biết rằng khi chia cho 4 dư 3, chia cho 5 dư 4 , chia cho 6 dư 5 biết số đó không nhỏ hơn 200 và không vượt quá 400.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301
Gọi số tự nhiên cần tìm là : x ( x thuộc N* ; 200 < x < 400)
Khi đó :
x chia 4 dư 3 => x + 1 chia hết cho 4
x chia 5 dư 4 => x + 1 chia hết cho 5
x chia 6 dư 5 = > x + 1 chia hết 6
Nên x + 1 thuộc BC(4;5;6) và 201 < (x + 1) < 401
=> BCNN(4;5;6) = 60
=> BC(4;5;6) = B(60) = {0;60;120;180;240;300;360}
Vậy x + 1 = {240;300;360}
=> x ={239;299;359}
bai nay tớ làm qua rồi nên giải phái của bạn hoàng là đúng
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Theo đề, ta có:
x-3 thuộc B(4) và x-4 thuộc B(5) và x-5 thuộc B(6)
mà 200<=x<=400
nên x thuộc {239;299;359}