1,(x-3)^2+3-x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
\(\left(x-3\right)^3+\left(x+3\right)^3=0\)
\(\Leftrightarrow x^3-9x^2+27x-27+x^3+9x^2+27x+27=0\)\(\Leftrightarrow2x^3+54x^2=0\)
\(\Leftrightarrow x^2\left(2x+54\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x+54=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-27\end{matrix}\right.\)
\(b,\left(x+1\right)^3-\left(x-1\right)^3=0\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=0\)\(\Leftrightarrow6x^2+2=0\)
\(\Leftrightarrow6x^2=-2\)
\(\Leftrightarrow x^2=-3\) ( vô lí)
Vậy pt vô nghiệm
\(c,x^2-4x+3=0\)
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
\(d,4x^2+4x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Rightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
\(e,\left(x+2\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(x+2-x-3\right)\left(x+2+x+3\right)=0\)
\(\Leftrightarrow-\left(2x+5\right)=0\)
\(\Leftrightarrow-2x-5=0\)
\(\Leftrightarrow-2x=5\Rightarrow x=-\dfrac{5}{2}\)
Học tốt nha you <3
\(2x^3-50x=0\)
<=> \(2x\left(x^2-25\right)=0\)
<=> \(2x\left(x-5\right)\left(x+5\right)=0\)
đến đây
bạn tự giải nhé
hk tốt
a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)
=>(x+5)(x-3)+8=x^2-1
=>x^2+2x-15+8=x^2-1
=>2x-7=-1
=>x=3(loại)
b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)
=>(x-4)(x+1)+x^2+3+5(x-1)=0
=>x^2-3x-4+x^2+3+5x-5=0
=>2x^2+2x-6=0
=>x^2+x-3=0
=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)
e: =>x^2-2x+1+2x+2=5x+5
=>x^2+3=5x+5
=>x^2-5x-2=0
=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)
g: (x-3)(x+4)*x=0
=>x=0 hoặc x-3=0 hoặc x+4=0
=>x=0;x=3;x=-4
Bài 3:
1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy.......................
2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)
\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
Vậy........................
3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy............................
4, 5 tương tự nhé bn!
bài 3
1 (x-1)(x+2)+5x-5=0
=>(x-1)(x+2)+(5x-5)=o
=>(x-1)(x+2)+5(x-1)=0
=>(x-1)(x+2+5)=0
=>(x-1)(x+7)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
vậy x=1 hoặc x=-7
2. (3x+5)(x-3)-6x-10=0
=>(3x+5)(x-3)-(6x+10)=0
=>(3x+5)(x-3)-2(3x+5)=0
=>(3x+5)(x-3-2)=0
=>(3x+5)(x-5)=0
=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)
1) (2x-1)(x+3)(2-x)=0
=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0
=>x=1/2 hoặc x=-3 hoặc x=2
2)x^3 + x^2 + x + 1 = 0
=>.x^2(x+1)+(x+1)=0
=>(x^2+1)(x+1)=0
=>x^2+1=0 hoặc x+1=0
=> x =-1
3) 2x(x-3)+5(x-3) =0
=>(2x+5)(x-3)=0
=>2x+5=0 hoặc x-3=0
=>x=-5/2 hoặc x=3
4)x(2x-7)-(4x-14)=0
=> (x-2)(2x-7)=0
=> x-2 =0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
5)2x^3+3x^2+2x+3=0
=>x^2(2x+3)+2x+3=0
=>(x^2+1)(2x+3)=0
=>x^2+1=0 hoặc 2x+3=0
=> x =-3/2
\(1,\left(x-3\right)^2+3-x=0\)
\(\Leftrightarrow x^2-6x+9+3-x=0\)
\(\Leftrightarrow x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy.........
\(\left(x-3\right)^2+3-x=0\\ \Leftrightarrow x^2-6x+9+3-x=0\\ \Leftrightarrow x^2-7x+12=0\\ \Leftrightarrow x^2-3x-4x+12=0\\ \Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy \(S=\left\{3;4\right\}\)