(1-1/1+2)(1-1/1+2+3)...(1-1/1+2+3+...+n)
Giúp mình với mik cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1}=1\)
Viết lại: 1+2+1+2+3+...+1+2+...+10
=2+6+...+55
=163
Hội con 🐄 chúc bạn học tốt!!!
\(D=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
\(D=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{\frac{\left[1+10\right]\cdot10}{2}}\)
\(D=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\)
\(D=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)
\(\frac{D}{2}=2\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\right]\)
\(D=2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{10\cdot11}\right]\)
\(D=2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right]\)
\(D=2\left[\frac{1}{2}-\frac{1}{11}\right]\)
\(D=\frac{9}{11}\)
Vậy D = 9/11
Lời giải:
$x-\frac{x}{3}\times \frac{3}{2}=2-\frac{1}{2}$
$x-x\times \frac{1}{2}=\frac{3}{2}$
$x\times (1-\frac{1}{2})=\frac{3}{2}$
$x\times \frac{1}{2}=\frac{3}{2}$
$x=\frac{3}{2}: \frac{1}{2}=3$
\(\frac{2}{5}\times\frac{1}{2}-\frac{2}{5}\times\frac{1}{3}-\frac{2}{5}\times\)\(\frac{1}{6}\)
\(=\frac{2}{5}\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\frac{2}{5}\times\frac{0}{6}\)
\(=\frac{2}{5}\times0\)
\(=0\)
\(\frac{2}{5}\times\frac{1}{2}-\frac{2}{5}\times\frac{1}{3}-\frac{2}{5}\times\frac{1}{6}\)
\(=\frac{2}{5}\times\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\frac{2}{5}\times0\)
\(=0\)
Gọi \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2017}< 1\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(=2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2016^2}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=1-\frac{1}{2^{2017}}< 1\) (đpcm)
Đặt A=1/2+(1/2)^2+...+(1/2)^2017
=>1/2 A=(1/2)^2+(1/2)^3+...+(1/2)^2017+(1/2)2018 (Nhân cả 2 vế cho 1/2)
=>1/2 A - A=(1/2)^2018-1/2
=>-1/2 A =(1/2)^2018-1/2
=>A=1-(1/2)^2017 <1 (Vì (1/2)^2017>0)
Đug ko biết
\(\dfrac{1}{2}\left(x-2\right)+\dfrac{1}{3}\left(2-x\right)=x\\ \Leftrightarrow\dfrac{1}{2}\left(x-2\right)-\dfrac{1}{3}\left(x-2\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{3-2}{6}\right)=x\\ \Leftrightarrow\left(x-2\right).\dfrac{1}{6}=x\\ \Leftrightarrow\dfrac{1}{6}x-\dfrac{1}{3}-x=0\\ \Leftrightarrow\left(\dfrac{1}{6}-1\right)x=\dfrac{1}{3}\\ \Leftrightarrow\left(\dfrac{1-6}{6}\right)x=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{-5}{6}x=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{1}{3}:\left(-\dfrac{5}{6}\right)\\ \Leftrightarrow x=-\dfrac{2}{5}\)
Vậy \(x=-\dfrac{2}{5}\)
3333333333333333333333333333333333333333333333333333333333333333333333333333