cho tam giác ABC + M : sinA=sinB.cosC. cmr: tam giác ABC vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A+B+C=180^0\Rightarrow sinA=sin\left(180^0-\left(B+C\right)\right)=sin\left(B+C\right)=sinBcosC+sinC.cosB\)
1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90
*Tự vẽ hình
a) Xét tam giác MAB và MDC có :
MA=MD(GT)
BM=CM(GT)
\(\widehat{BMA}=\widehat{DMC}\left(đđ\right)\)
=> Tam giác MAB=MDC ( c.g.c )
b) Mình nghĩ đề bài sửa thành CM AB//CD thì có vẻ đúng hơn
Có : Tam giác MAB=MDC (cmt)
=> \(\widehat{BAD}=\widehat{ADC}\)
Mà 2 góc này ở vị trí so le trong
=> AB//CD
- Xét tam giác ABD và CDA có :
AD-cạnh chung
\(\widehat{ADC}=\widehat{DAB}\left(tgMAB=MDC\right)\)
AB=BC(tgMAB=MDC)
=> 2 tam giác này bằng nhau
c) Vâng, như đề bài thì chúng ta đã có tam giác ABC vuông tại A nên khỏi cần chứng minh đâu :)
#Hoctot
Đề bài sai, phản ví dụ:
Tam giác ABC vuông tại A với \(AB=1;AC=\sqrt{3};BC=2\)
Khi đó \(AM=\dfrac{1}{2}BC=1=AB\) thỏa mãn yêu cầu bài toán
Góc \(B=60^0;A=90^0\)
Khi đó: \(sinA=1\) trong khi \(2sin\left(B-A\right)=2sin\left(-30\right)=-1\)