K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 3x^2-12y^2

=3(x^2-4y^2)

=3(x-2y)(x+2y)

b: 5xy^2-10xyz+5xz^2

=5x(y^2-2yz+z^2)

=5x(y-z)^2

g: (a+b+c)^3-a^3-b^3-c^3

=(a+b+c-a)[(a+b+c)^2+a(a+b+c)+a^2]-(b+c)(b^2-bc+c^2)

=(b+c)[a^2+b^2+c^2+2ab+2ac+2bc+a^2+ab+ac+a^2-b^2+bc-c^2]

=(b+c)[3a^2+3ab+3bc+3ac]

=3(a+b)(b+c)(a+c)

16 tháng 11 2021

\(1,\\ a,=6x^4-15x^3-12x^2\\ b,=x^2+2x+1+x^2+x-3-4x=2x^2-x-2\\ c,=2x^2-3xy+4y^2\\ 2,\\ a,=7x\left(x+2y\right)\\ b,=3\left(x+4\right)-x\left(x+4\right)=\left(3-x\right)\left(x+4\right)\\ c,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ d,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ 3,\\ a,\Leftrightarrow3x\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

16 tháng 11 2021

Câu 1

a)\(3x^2\left(2x^2-5x-4\right)=6x^4-15x^3-12x^2\)

b)\(\left(x+1\right)^2+\left(x-2\right)\left(x+3\right)-4x=x^2+2x+1+x^2+3x-2x-6-4x=2x^2-x-5\)

 

13 tháng 8 2021

\(a.3x^2-3y^2-2\left(x-y\right)^2\\ =3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left[3\left(x+y\right)-2.\left(x-y\right)\right]=\left(x-y\right)\left(x+5y\right)\\ b.x^2-y^2-2x-2y\\ =\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\\ =\left(x+y\right)\left(x-y-2\right)\\ c.\left(x-1\right)\left(2x+1\right)+3\left(x-1\right)\left(x+2\right)\left(2x+1\right)\\ =\left(x-1\right)\left(2x+1\right)\left[1+3\left(x+2\right)\right]\\ =\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\\ d.\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)-\left(5-x\right)\left(2x+1\right)\\ =\left(x-5\right)^2+\left(x+5\right)\left(x-5\right)+\left(x-5\right)\left(2x+1\right)\\ =\left(x-5\right)\left[\left(x-5\right)+\left(x+5\right)+\left(2x+1\right)\right]\\ =\left(x-5\right)\left(4x+1\right)\)

 

13 tháng 8 2021

a) 3x2-3y2-2(x-y)2

\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\\ =3\left(x+y\right)\left(x-y\right)-2\left(x-y\right)^2\\ =\left(x-y\right)\left(3-2x+2y\right)\)

Câu 1: Phân tích đa thức thành nhân tử:a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).Câu 2: Tìm x, biết:a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).a). Rút gọn biểu thức A.b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.Câu 4:1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ...
Đọc tiếp

Câu 1: Phân tích đa thức thành nhân tử:

a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).

Câu 2: Tìm x, biết:

a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.

Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).

a). Rút gọn biểu thức A.

b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.

Câu 4:

1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ nhật có chiều dài 105m, chiều rộng 68m. Ban quản lý muốn thay cỏ mới cho sân. Tính số tiền ban quản lý phải trả để mua cỏ ? biết mỗi mét vuông cỏ có giá 120 000 đồng.

2). Cho ΔABC vuông tại A (AB < AC), đương cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.

a). Chứng minh tứ giác ABDC là hình chữ nhật.

b). Trên tia đối của tia HA lấy điểm E sao cho HA = HE. Chứng minh DB là phân giác góc ADE.

c). Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H, I, K thẳng hàng.

 

 

1
13 tháng 12 2023

Câu 2:

a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)

=>\(x^2-1-x^2-3x+7=0\)

=>-3x+6=0

=>-3x=-6

=>\(x=\dfrac{-6}{-3}=2\)

b: \(2x^3-22x^2+36x=0\)

=>\(2x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-2x-9x+18\right)=0\)

=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)

=>\(x\left(x-2\right)\left(x-9\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)

Câu 4:

1: Diện tích cỏ cần thay là:

\(105\cdot68=7140\left(m^2\right)\)

Số tiền BQL sân cần trả là:

\(7140\cdot120000=856800000\left(đồng\right)\)

2:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE
=>HM//DE

=>BC//DE

=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)

Ta có: ABDC là hình chữ nhật

=>AD=BC

mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)

nên MD=MB

=>ΔMBD cân tại M

=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)

=>\(\widehat{ADB}=\widehat{EDB}\)

=>DB là phân giác của góc ADE

1 tháng 11 2021

\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)

1 tháng 11 2021

bạn giải lại giúp mình bài 2 được ko ạ

 

a: \(x^2-9-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)

\(=\left(x^2-9\right)\left(1-x^2\right)\)

\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)

b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)

\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)

c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)

\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)

\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

d: \(x^2+5x+6\)

\(=x^2+2x+3x+6\)

\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

e: \(3x^2-4x-4\)

\(=3x^2-6x+2x-4\)

\(=3x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(3x+2\right)\)

g: \(x^4+64y^4\)

\(=x^4+16x^2y^2+64y^4-16x^2y^2\)

\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

 

h: \(a^2+b^2+2a-2b-2ab\)

\(=a^2-2ab+b^2+2a-2b\)

\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)

i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)

\(=\left(x+1-y+3\right)^2\)

\(=\left(x-y+4\right)^2\)

k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)\)

\(=\left(x+1\right)\left(x-1\right)^2\)

26 tháng 10 2021

a: \(=\left(3-x\right)\left(x+1\right)\)

b: \(=3x\left(x-y\right)-5\left(x-y\right)\)

=(x-y)(3x-5)

c: \(=x\left(x-y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(x-10\right)\)

26 tháng 10 2021

a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)

b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)

d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)

e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)

f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)

g) \(=y\left(y^2-2xy+x^2-y\right)\)

h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)

31 tháng 7 2021

a) x3+4x-5 = x3-x2+x2+4x-5=(x3-x2)+(x2-x)+(5x-5)=x2(x-1)+x(x-1)+5(x-1)=(x2+x+5)(x-1)

b) x3-3x2+4=x3-2x2-x2+4=(x3-2x2)-(x2-4)=x2(x-2)-(x-2)(x+2)=(x2-x+2)(x-2)

c) x3+2x2+3x+2=x3+x2+x2+x+2x+2=(x3+x2)+(x2+x)+(2x+2)=x2(x+1)+x(x+1)+2(x+1)=(x2+x+2)(x+1)

d) bạn xem lại đề đúng ko

e) (x2+3x)2-2(x2+3x)-8=x4+6x3+9x2-2x2-6x-8=x4+6x3+7x2-6x-8=x4-x3+7x3-7x2+14x2-14x+8x-8=(x4-x3)+(7x3-7x2)+(14x2-14x)+(8x-8)=x3(x-1)+7x2(x-1)+14x(x-1)+8(x-1)=(x3+7x2+14x+8)(x-1)=(x3+x2+6x2+6x+8x+8)(x-1)=\(\left[\left(x^3+x^2\right)+\left(6x^2+6x\right)+\left(8x+8\right)\right]\left(x-1\right)\)\(=\left[x^2\left(x+1\right)+6x\left(x+1\right)+8\left(x+1\right)\right]\left(x-1\right)\)\(=\left(x^2+6x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left(x^2+2x+4x+8\right)\left(x+1\right)\left(x-1\right)\)\(=\left[\left(x^2+2x\right)+\left(4x+8\right)\right]\left(x+1\right)\left(x-1\right)\)\(=\left[x\left(x+2\right)+4\left(x+2\right)\right]\left(x+1\right)\left(x-1\right)\)=\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

f) (x2+4x+10)2-7(x2+4x+11)+7=(x2+4x+10)2-\(\left[7\left(x^2+4x+11\right)-7\right]\)\(=\left(x^2+4x+10\right)^2-7\left(x^2+4x+10\right)\)\(=\left(x^2+4x+10\right)\left(x^2+4x+3\right)\)

a) Ta có: \(x^3+4x-5\)

\(=x^3-x+5x-5\)

\(=x\left(x-1\right)\left(x+1\right)+5\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+5\right)\)

b) Ta có: \(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\cdot\left(x-2\right)^2\)

c) Ta có: \(x^3+2x^2+3x+2\)

\(=x^3+x^2+x^2+x+2x+2\)

\(=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+2\right)\)

d) Ta có: \(x^2+2xy+y^2+2x+2y-3\)

\(=\left(x+y\right)^2+2\left(x+y\right)-3\)

\(=\left(x+y\right)^2+3\left(x+y\right)-\left(x+y\right)-3\)

\(=\left(x+y\right)\left(x+y+3\right)-\left(x+y+3\right)\)

\(=\left(x+y+3\right)\left(x+y-1\right)\)

NV
16 tháng 7 2021

a.

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)

\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)

b.

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c.

\(=x^4-1+4x^2-4\)

\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

a) Ta có: \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

b) Ta có: \(x^2-2xy+y^2-zx+yz\)

\(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

c) Ta có: \(x^4+4x^2-5\)

\(=x^4+4x^2+4-9\)

\(=\left(x^2+2\right)^2-3^2\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)