K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

2x + 2x+1 = 24

=> 2x + 2x+1 = 23 + 24

2x+1 = 24

x+1 = 4

x = 4 - 1

x = 3

Vậy x lần lượt là 3 và 4

15 tháng 6 2017

\(\Leftrightarrow\)2x + 2x . 2 = 24

\(\Leftrightarrow\)2x . (1 + 2 ) = 24

\(\Leftrightarrow\)2x . 3        = 24

\(\Leftrightarrow\)2x            = 24 : 3

\(\Leftrightarrow\)2x             = 8

\(\Leftrightarrow\)2x              = 23

\(\Leftrightarrow\)x                = 3

13 tháng 5 2022

`2x-2/3=1/2`

`2x=1/2+2/3`

`2x=7/6`

`x=7/6:2=7/12`

13 tháng 5 2022

\(2x-\dfrac{2}{3}=\dfrac{1}{2}\Leftrightarrow2x=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\Leftrightarrow x=\dfrac{7}{6}:2=\dfrac{7}{12}\)

8 tháng 11 2019

\(B=|2014-2x|+|2016-2x|\)

\(=|2014-2x|+|2x-2016|\ge|2014-2x+2x-2016|\)

Hay \(B\ge2\)

Dấu"="xảy ra \(\Leftrightarrow\left(2014-2x\right)\left(2x-2016\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}2014-2x\ge0\\2x-2016\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}2014-2x< 0\\2x-2016< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x\le2014\\2x\ge2016\end{cases}\left(loai\right)}\)hoặc\(\hept{\begin{cases}2x>2014\\2x< 2016\end{cases}}\) 

\(\Leftrightarrow\hept{\begin{cases}x>1007\\x< 1008\end{cases}}\)

\(\Leftrightarrow1007< x< 1008\)

Vậy \(B_{min}=2\)\(\Leftrightarrow1007< x< 1008\)

21 tháng 7 2017

a,Ta có D= (1/3+2x+1/3-2x):1/3+2x

=2/3:1/3+2x

=2+2x

=2(x+1)

b, Từ câu a ta có

D=2(x+1)

Với x=3

=>2(x+1)

=2.4=8

KL

21 tháng 7 2017

a,Ta có D= (1/3+2x+1/3-2x):1/3+2x

=2/3:1/3+2x

=2+2x

=2(x+1)

b, Từ câu a ta có

D=2(x+1)

Với x=3

=>2(x+1)

=2.4=8

=>(2x-1)^2=24^2

=>2x-1=24 hoặc 2x-1=-24

=>x=-23/2 hoặc x=25/2

14 tháng 7 2023

Bạn Nguyễn Lê Phước Thịnh ơi, mình chưa hiểu phần (2x-1)^2 lắm ạ. Bạn giải thích giúp mình đc không

DT
30 tháng 10 2023

2x+6 chia hết cho x+1

=>2(x+1)+4 chia hết cho x + 1

=> 4 chia hết cho x + 1

=> x+1 thuộc Ư(4)={±1;±2;±4}

=> x thuộc {0;-2;1;-3;3;-5}

24 tháng 9 2021

 chọn lộn môn

Em đăng bài quả môn toán nhận hỗ trợ nhanh nhất nha

21 tháng 2 2017

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

A = |2x - 2| + |2x - 2013| = |2 - 2x| + |2x - 2013| ≥ |2 - 2x + 2x - 2013| = |- 2011| = 2011

Dấu "=" xảy ra <=> (2 - 2x)(2x - 2013) ≥ 0 => 2013/2 ≥ x ≥ 1

Vậy GTNN của A là 2011 <=> 2013/2 ≥ x ≥ 1

18 tháng 7 2018

Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)

=> x = (-2).21 = -42

     y = (-2).14 = -28

     z = (-2).10 = -20

Vậy ...

18 tháng 7 2018

\(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}\)hay   \(\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\) \(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}\)hay  \(\frac{y}{14}=\frac{z}{10}\)

suy ra:   \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\) hay   \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=-2\)

suy ra:   \(\frac{3x}{63}=-2\)\(\Rightarrow\)\(x=-42\)

             \(\frac{7y}{98}=-2\)\(\Rightarrow\)\(y=-28\)

             \(\frac{5z}{50}=-2\) \(\Rightarrow\)\(z=-10\)

16 tháng 8 2020

Bài làm:

a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)

+ Nếu x = 6

\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)

+ Nếu x = 4

\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)

16 tháng 8 2020

b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)

\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{4}{3}\)

Thay vào ta được:

\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)

\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)

\(\Leftrightarrow14y=-4\)

\(\Rightarrow y=-\frac{2}{7}\)

Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)