Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)
=> 2(x+y+z) +3 =1=> x+y+z=-1
Luôn đùng Vói mọi x;y;z khác o sao cho x+y+z = -1
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
x= 3/2 .12=18
y= 4/3 .12=16
z=5/4 .12=15
a)2x=3y 5y=7z
=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)
\(\frac{x}{21}=-2=>x=-2.21=-42\)
\(\frac{y}{14}=-2=>y=-2.14=-28\)
\(\frac{z}{10}=-2=>z=-2.10=-20\)
a.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]
=> x = 10/23 * 15 = 150/23
y = 10/23 * 5 = 50/23
z = 10/23 * 93 = 30/23
b.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]
=> 2x = 16/9 * 30 = 160/3 => x = 80/3
3y = 16/9 * 15 = 80/3 => y = 80/9
z = 16/9 * 3 = 48/9
c.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 7/8 * 15 = 105/8
2y = 7/8 * 10 = 70/8 => y = 35/8
3z = 7/8 * 9 = 63/8 => z = 21/8
Bài làm:
a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
+ Nếu x = 6
\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)
+ Nếu x = 4
\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)
b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)
\(\Leftrightarrow x=\frac{4}{3}\)
Thay vào ta được:
\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)
\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)
\(\Leftrightarrow14y=-4\)
\(\Rightarrow y=-\frac{2}{7}\)
Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)