Cho a,b,c,d là các số thực. Chứng minh rằng:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\Leftrightarrow0=0\)Có điều này đúng nên ta có đpcm đúng
\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+bc^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b)
VP=(a+b)[(a-b)2+ab]
=(a+b)(a2-2ab+b2+ab)
=(a+b)(a2-ab+b2)
=a3+b3=VT
Vậy x3+y3=(a+b)[(a-b)2+ab]
c)
VP=(ac+bd)2+(ad-bc)2
=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+a2d2)+(b2d2+b2c2)
=a2.(c2+d2)+b2.(c2+d2)
=(a2+b2)(c2+d2)
Vậy (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
=(ac+bd)(ac+bd)+(ad-bc)(ad-bc)
=ac2+abcd+abcd+bd2+ad2-abcd-abcd+bc2
=a2.c2+b2.d2+a2.d2+b2.c2
=a2(c2+d2)+b2(d2+c2)=(a2+b2)(c2+d2)
có thiếu ĐK nào k bạn ?
áp dụng BĐT cauchy :
\(\dfrac{b}{\left(a+\sqrt{b}\right)^2}+\dfrac{d}{\left(c+\sqrt{d}\right)^2}\ge2\sqrt{\dfrac{bd}{\left(a+\sqrt{b}\right)^2\left(c+\sqrt{d}\right)^2}}=\dfrac{2\sqrt{bd}}{\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)}\)
việc còn lại cần chứng minh \(\left(a+\sqrt{b}\right)\left(c+\sqrt{d}\right)\le2\left(ac+\sqrt{bd}\right)\)(đúng theo BĐT chebyshev)(không mất tính tổng quát giả sừ \(a\le\sqrt{b};c\le\sqrt{d}\))
dấu = xảy ra khi \(a=\sqrt{b};c=\sqrt{d}\)
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
(ac+bd)^2=\(^{a^2c^2+2abcd+b^2d^2}\)
\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)
\(\Rightarrow\left(ac+bd\right)^2-\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) =vp(dpcm)
????????????????