Tính GTNN của biểu thức
P= \(\frac{x^2}{x+4}.\left(\frac{x^2+16}{x}+8\right)+9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
\(\ge\left(\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}\cdot\frac{y^{10}}{x^2}}-x^4y^4\right)+\left[\frac{2x^8y^8}{4}-2x^2y^2\right]-1\)
\(\ge\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-2x^2y^2-\frac{3}{2}-1\ge4\sqrt[4]{\frac{x^8y^8}{2.2.2.2}}-\frac{3}{2}-1=2x^2y^2-2x^2y^2-\frac{5}{2}=-\frac{5}{2}\)
Vậy min Q = -5/2 tại x = y = +-1
Còn cách đặt ẩn phụ thế này:
\(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\ge\frac{1}{2}.2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}+\frac{1}{4}.2\sqrt{x^{16}.y^{16}}-\left(x^4y^4+2x^2y^2+1\right)\)\(=\frac{x^8y^8}{2}-4x^2y^2-2\)
Đặt x2y2 = t >= 0. Khi đó:
\(2Q=t^4-4t-2=\left(t^4-2t^2+1\right)+2\left(t^2-2t+1\right)+5=\left(t^2-1\right)^2+2\left(t-1\right)^2+5\ge5\Rightarrow Q\ge\frac{5}{2}\)Xảy ra đẳng thức khi và chỉ khi x = y =+-1
bạn vào câu hỏi tương tự xem bài của Ngô Thị Thu Trang nhé, Mr.Lazy giải rồi đó
Với \(x\ne0\), đặt \(\left|x\right|=a>0\)
\(A=\frac{\left(a^2+18a+32\right)\left(a^2+9a+8\right)}{a^2}=\frac{\left(a+2\right)\left(a+16\right)\left(a+1\right)\left(a+8\right)}{a^2}\)
\(A=\frac{\left(a+2\right)\left(a+8\right)\left(a+1\right)\left(a+16\right)}{a^2}=\frac{\left(a^2+10a+16\right)\left(a^2+17a+16\right)}{a^2}\)
\(A=\frac{\left(a^2+16+10a\right)}{a}.\frac{\left(a^2+16+17a\right)}{a}=\left(a+\frac{16}{a}+10\right)\left(a+\frac{16}{a}+17\right)\)
\(\Rightarrow A\ge\left(2\sqrt{a.\frac{16}{a}}+10\right)\left(2\sqrt{a.\frac{16}{a}}+17\right)=\left(8+10\right)\left(8+17\right)=450\)
\(\Rightarrow A_{min}=450\) khi \(a^2=16\Rightarrow a=4\Rightarrow x=\pm4\)
1/ \(C=\frac{x+9}{10\sqrt{x}}=\frac{\sqrt{x}}{10}+\frac{9}{10\sqrt{x}}\ge2.\frac{3}{10}=0,6\)
Đạt được khi x = 9
2/ \(E=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=x-3\sqrt{x}+2\)
\(=\left(x-\frac{2.\sqrt{x}.3}{2}+\frac{9}{4}\right)-\frac{1}{4}\)
\(=\left(\sqrt{x}-\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Vậy GTNN là \(-\frac{1}{4}\)đạt được khi \(x=\frac{9}{4}\)
Không có GTLN nhé
Dễ mà bạn:\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)
\(P=\frac{x^2}{x+4}\left(\frac{x^2+8x+16}{x}\right)+9\)
\(P=\frac{x^2}{x+4}.\frac{\left(x+4\right)^2}{x}+9\)
\(P=x\left(x+4\right)+9=x^2+4x+9\)
\(P=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Vậy minP=5 khi x=-2
ĐK: x khác 0 và x khác -4
\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9=\frac{x^2}{x+4}\frac{\left(x+4\right)^2}{x}+9=x\left(x+4\right)+9=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)
GTNN P=5 khi x=-2
\(\Leftrightarrow P=\left(\frac{x\left(3-x\right)}{9-x^2}+\frac{2\left(x+3\right)}{9-x^2}+\frac{x^2-1}{9-x^2}\right):\left(\frac{2\left(x+3\right)-\left(x+5\right)}{x+3}\right)\)
\(\Leftrightarrow P=\frac{3x-x^2+2x+6+x^2-1}{9-x^2}:\frac{x+1}{x+3}\)
\(\Leftrightarrow P=\frac{5\left(x+1\right)}{\left(3-x\right)\left(x+3\right)}.\frac{x+3}{x+1}\)
\(\Leftrightarrow P=\frac{5}{3-x}\) Ta có A=\(\frac{10x^2}{x-3}\)
\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)
\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{x-4}{\left(x-4\right)\left(x+4\right)}\right)\cdot\frac{x^2-2x-8}{1}\)
\(P=\left(\frac{x+4}{\left(x+4\right)\left(x-4\right)}\right)\cdot x^2-2x-8\)
\(P=\frac{1}{x-4}\cdot x^2-2x-8\)
P\(P=\frac{x^2+2x-4x+8}{x-4}\)
\(P=\frac{x\left(x+2\right)-4\left(x+2\right)}{x-4}\)
\(P=\frac{\left(x-4\right)\left(x+2\right)}{x-4}\)
\(P=x+2\)
2 ,\(x^2-9x+20=0\)
\(\Rightarrow x^2-4x-5x+20=0\)
\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
\(\orbr{\begin{cases}x=5\Rightarrow\\x=4\Rightarrow\end{cases}}\orbr{\begin{cases}P=7\\P=6\end{cases}}\)
\(P=\frac{x^2}{x+4}.\left(\frac{x^2+16}{x}+8\right)+9=x^2+4x+9\)
\(=\left(x+2\right)^2+5\ge5\)
Dấu = xảy ra khi \(x=-2\)
thanks