K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

a) \(\dfrac{3x^2+6xy}{6x^2}=\dfrac{3x\left(x+2y\right)}{6x^2}=\dfrac{x+2y}{2x}\)

b) \(\dfrac{2x^2-x^3}{x^2-4}=\dfrac{x^2\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x^2}{x+2}\)

c) \(=\dfrac{x+1}{x^3+1}=\dfrac{x+1}{\left(x+1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

`a, (3x^2+6xy)/(6x^2) = (x+2y)/(3x)`

`b, (2x^2-x^3)/(x^2-4) = (x^2(2-x))/((x-2)(x+2))`

`= -x^2/(x+2)`

`c, (x+1)/(x^3+1) = 1/(x^2-x+1)`

22 tháng 7 2023

a) \(\dfrac{3x^2y}{2xy^5}=\dfrac{3x}{2y^4}\)

b) \(\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\)

c) \(\dfrac{ab^2-a^2b}{2a^2+a}=\dfrac{ab\left(b-a\right)}{a\left(2a+1\right)}=\dfrac{b\left(b-a\right)}{2a+1}=\dfrac{b^2-ab}{2a+1}\)

d) \(\dfrac{12\left(x^4-1\right)}{18\left(x^2-1\right)}=\dfrac{2\left(x^2-1\right)\left(x^2+1\right)}{3\left(x^2-1\right)}=\dfrac{2\left(x^2+1\right)}{3}\)

`a, (3x^2y)/(2xy^5)`

`= (3x)/(2y^4)`

`b, (3x^2-3x)/(x-1)`

`= (3x(x-1))/(x-1)`

`= 3x`

`c, (ab^2-a^2b)/(2a^2+a)`

`= (b(a-b))/((2a+1))`

`d, (12(x^4-1))/(18(x^2-1)) = (2(x^2+1))/3`.

15 tháng 9 2023

a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)

b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)

c) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5}{3}\left(x\ne y\right)\)

d) \(\dfrac{x^2-y^2}{x+y}=x-y\left(đk:x\ne-y\right)\)

e) \(\dfrac{x^3-x^2+x-1}{x^2-1}=\dfrac{x^2+1}{x+1}\left(đk:x\ne\pm1\right)\)

f) \(\dfrac{x^2+4x+4}{2x+4}=\dfrac{x+2}{2}\left(đk:x\ne-2\right)\)

6 tháng 10 2021

a) \(\dfrac{6x^2y^2}{8xy^5}=\dfrac{3x}{4y^3}\)

b) \(=\dfrac{2y}{3\left(x+y\right)^2}=\dfrac{2y}{3x^2+6xy+3y^2}\)

c) \(=\dfrac{2x\left(x+1\right)}{x+1}=2x\)

d) \(=\dfrac{x\left(x-y\right)-\left(x-y\right)}{x\left(x+y\right)-\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}=\dfrac{x-y}{x+y}\)

e) \(=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=-9\left(x-2\right)^2=-9x^2+36x-36\)

26 tháng 12 2021

a)\(\dfrac{x^2-4xy+4y^2}{xy-2y^2}\)

=\(\dfrac{x^2-4xy+\left(2y\right)^2}{y\left(x-2y\right)}\)

=\(\dfrac{\left(x-2y\right)^2}{y\left(x-2y\right)}\)

=\(\dfrac{x-2y}{y}\)

b)\(\dfrac{x^3-36x}{x^2+6x}\)

=\(\dfrac{x\left(x^2-6^2\right)}{x\left(x+6\right)}\)

=\(\dfrac{x\left(x+6\right)\left(x-6\right)}{x\left(x+6\right)}\)

\(x-6\)

#Fiona 

Chúc bạn học tốt !

a: \(=6+2\sqrt{11}-4+\sqrt{11}=2+3\sqrt{11}\)

b: \(=\dfrac{3x+9\sqrt{x}-2x+4\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-2\sqrt{x}\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+13}=\dfrac{\sqrt{x}+3}{x-2\sqrt{x}}\)

6 tháng 2 2022

nhờ bạn có thể giải chi tiết cho mình câu 1b đc ko

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)

= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]

= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)

= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3

= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x

= -8x4 + 5x3 + 24x2 – 6x

\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)

a: \(=\dfrac{\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)-3abc}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ac}\)

=a+b+c

b: 

Sửa đề: \(=\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{\left(x-y\right)^3+z^3+3xy\left(x-y\right)+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{\left(x-y+z\right)\left(x^2-2xy+y^2-xz+yz+z^2\right)+3xy\left(x-y+z\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy-xz+yz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)

\(=\dfrac{x-y+z}{2}\)

15 tháng 9 2023

a) \(\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

22 tháng 5 2023

A = (2 + √2)/(1 + √2)

= √2(√2 + 1)/(1 + √2)

= √2

C = (2√3 - √6)/(√8 - 2)

= √6(√2 - 1)/[2(√2 - 1)]

= √6/2

E = (x√x + 1)/(√x + 1)

= (√x + 1)(x - √x + 1)/(√x + 1)

= x - √x + 1

22 tháng 5 2023

A = $\frac{2 + \sqrt{2}}{1 + \sqrt{2}}$

Để rút gọn biểu thức này, ta nhân tử và chia tử cho $1 - \sqrt{2}$:

A = $\frac{(2 + \sqrt{2})(1 - \sqrt{2})}{(1 + \sqrt{2})(1 - \sqrt{2})}$

A = $\frac{-2\sqrt{2}}{-1}$

A = $2\sqrt{2}$

C = $\frac{2\sqrt{3} - \sqrt{6}}{\sqrt{8} - 2}$

Ta nhân tử và chia tử cho $\sqrt{2}$:

C = $\frac{(2\sqrt{3} - \sqrt{6})\sqrt{2}}{(\sqrt{8} - 2)\sqrt{2}}$

C = $\frac{4\sqrt{6} - 2\sqrt{3}}{2\sqrt{2}}$

C = $\frac{2\sqrt{6} - \sqrt{3}}{\sqrt{2}}$

Ta nhân tử và chia tử cho $\sqrt{6} + \sqrt{2}$:

C = $\frac{(2\sqrt{6} - \sqrt{3})(\sqrt{6} + \sqrt{2})}{(\sqrt{2})(\sqrt{6} + \sqrt{2})}$

C = $\frac{12 - 3\sqrt{2}}{2}$

C = $6 - \frac{3\sqrt{2}}{2}$

E = $\frac{x\sqrt{x+1}}{\sqrt{x+1}}$

E = $x\sqrt{\frac{x+1}{x+1}}$

E = $x$.

16 tháng 7 2021

\(A=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\left(x>0,x\ne1\right)\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

\(=\dfrac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)

\(B=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4;9\right)\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(C=\left(\dfrac{x+\sqrt{x}-1}{x\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\right):\dfrac{1}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{x+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\right).\left(\sqrt{x}-1\right)\)

\(=\dfrac{x+\sqrt{x}-1-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)=\dfrac{3\sqrt{x}-2}{x+\sqrt{x}+1}\)