K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

\(m^2-n^2=2m-2n\left(1\right)\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)=2\left(m-n\right)\)

\(\Rightarrow\left(m-n\right)\left(m+n\right)-2\left(m-n\right)=0\)

\(\Rightarrow\left(m-n\right)\left(m+n-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m-n=0\\m+n-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=n\\m+n=2\end{matrix}\right.\)

Vậy (1) đúng khi \(m=n\) hay \(m+n=2\)

22 tháng 7 2023

Bạn xem lại đề.

1 tháng 7 2021

(2m-3)(3n-2)-(3m-2)(2n-3)

=6mn-4m-9n+6-(6mn-9m-4n+6)

=6mn-4m-9n+6-6mn+9m+4n-6

=5m-5n

=5(m-n). Vì 5 chia hết cho 5

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi số nguyên m và n.

Ta có: \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)

\(=6mn-4m-9n+6-6m^2+9m+4n-6\)

\(=5m-5n⋮5\)

6 tháng 4 2016

Đương nhiên là vậy rồi, chứng minh làm gì nữa

mk ko bít làm sorry! ~_~

53466

3 tháng 5 2015

Xét hiệu:  2m2 + 2n2 + 1 - 2m - 2n = 2.(m2 - m + 1/4) + 2.(n2 - n +1/4) = \(=2.\left(m-\frac{1}{2}\right)^2+2.\left(n-\frac{1}{2}\right)^2\ge0\) với mọi m; n

=> ĐPCM

 

17 tháng 6 2016

a)m>n công vế vs 2

=> m+2>n+2

b)  nhân cả 2 vế m>n cói -2, vì -2 là âm nên dấu bdt đổi chiều: -2m<-2n

c)m>n

=> 2m>2n

=> 2m-5>2n-5

d) m>n

=> -3m<-3n

=>4-3m<4-3n

17 tháng 6 2016

a) Ta có: m > n => m + 2 > n + 2 (cộng hai vế với 2)
b) Ta có: m > n => -2m < -2n ( nhân hai vế với -2 và đổi chiều BĐT)
c) Ta có: m > n => 2m > 2n => 2m – 5 > 2n – 5
(nhân hai vế với 2, rồi cùng cộng vào hai vế với -5)
d) Ta có m > n => -3m < -3n ⇒ 4 – 3m < 4 – 3n
(nhân hai vế với -3 và đổi chiều BĐT, rồi cùng cộng vào hai vế với 4)

22 tháng 4 2021

a.m+2>n+2

Ta có: m >n

=>m+2 > n+2 (cộng hai vế với 2)

do đó m+2>n+2

b, -2m < -2n

Ta có: m > n

=> -2m < -2n (nhân hai vế với -2)

do đó -2m<-2n

c,2m-5>2n-5

Ta có: m>n

=>2m>2n (nhân hai vế với 2)

=>2m-5>2n-5 ( cộng hai vế với -5)

do đó 2m-5>2n-5

d,4-3m<4-3n

Ta có :m>n

=> -3m<-3n (nhân hai vế với -3)

=> 4-3m<4-3n (cộng 2 vế với 4)

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

1 tháng 5 2019

a) vì a<b

<=>-5a>-5b

mà 7>2

<=>7-5a>2-5b

b) vì m<n <=>2m<2n<=>2m-5<2n-5

10 tháng 8 2020

giúp tớ với

10 tháng 8 2020

( 2m - 3 )( 3n - 2 ) - ( 3m - 2 )( 2n - 3 )

= 6mn - 4m - 9n + 6 - ( 6mn - 9m - 4n + 6 )

= 6mn - 4m - 9n + 6 - 6mn + 9m + 4n - 6

= 5m - 5n

= 5( m - n ) \(⋮\)5 với mọi m, n thuộc Z ( đpcm )