Mỗi cặp đơn thức sau có đồng dạng không? Nếu có, hãy tìm tổng và hiệu của chúng.
a) \(xy\) và \( - 6xy\) b) \(2xy\) và \(x{y^2}\) c) \( - 4yz{x^2}\) và \(4{x^2}yz\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có đồng dạng
`xy+(-6xy)=-5xy`
`xy-(-6xy)=7xy`
b) Không đồng dạng
c) Có đồng dạng
`-4yzx^{2}+4x^{2}yz=0`
`-4yzx^{2}-4x^{2}yz=-8x^{2}yz`
a/2/3 x2y và -2/3 xy2 là 2 đơn thức không đồng dạng
b/ 2xy và 3/4 xy là 2 đơn thức đồng dạng
c/ 5x và 5x2 là 2 đơn thức không đồng dạng
a. 2/3 x2y và - 2/3 xy2 là hai đơn thức đồng dạng
b. 2xy và 3/4 xy là 2 đơn thức đồng dạng
c. 5x và 5x2 không phải là 2 đơn thức đồng dạng
a. 2/3 x2y và - 2/3 xy2 là hai đơn thức đồng dạng
b. 2xy và 3/4 xy là 2 đơn thức đồng dạng
c. 5x và 5x2 không phải là 2 đơn thức đồng dạng
a: \(\dfrac{xy^2}{xy-y}=\dfrac{y\cdot xy}{y\cdot\left(x-1\right)}=\dfrac{xy}{x-1}\)
=>Hai phân thức này bằng nhau
b: \(\dfrac{xy+y}{x}=\dfrac{y\left(x+1\right)}{x}\)
\(\dfrac{xy+x}{y}=\dfrac{x\left(y+1\right)}{y}\)
Vì \(\dfrac{y\left(x+1\right)}{x}\ne\dfrac{x\left(y+1\right)}{y}\)
nên hai phân thức này không bằng nhau
c: \(\dfrac{-6}{4y}=\dfrac{-6:2}{4y:2}=\dfrac{-3}{2y}\)
\(\dfrac{3y}{-2y^2}=\dfrac{-3y}{2y^2}=\dfrac{-3y}{y\cdot2y}=\dfrac{-3}{2y}\)
Do đó: \(\dfrac{-6}{4y}=\dfrac{3y}{-2y^2}\)
=>Hai phân thức này bằng nhau
câu a và b là 2 cặp đơn thức đồng dạng còn câu c thì k có cặp đơn thức đồng dạng
`a, (xy^2)/(xy+y) = (xy^2)/(y(x+1))`
`=(xy)/(x+1)`
Vậy `2` cặp phân thức bằng nhau.
`b, (xy-y)/x = (y(x-1))/x = (y^2(x-1))/(xy)`
`(xy-x)/y = (x(y-1))/y = (x^2(y-1))/(xy)`
Vậy `2` đa thức không bằng nhau
a: =3x^2y^3-2x^3y^2-2xy^4+3x^3y^2+3x^2y^3+5x^4y-5x^3y^2
=6x^2y^3-4x^3y^2-2xy^4+5x^4y
Bậc là 5
b: =x^4-y^4-3x^2y^2-3xy^3+5x^2y^2+x^3y-x^2y^2
=x^4-y^4+x^2y^2-3xy^3+x^3y
Bậc là 4
c: =3x^3y+3x^2y^2-7x^3y+7xy^3-3xy^2+2x^2y^2+5xy+x
=-4x^3y+5x^2y^2+7xy^3-3xy^2+5xy+x
bậc là 4
Đơn thức `a, c` đồng dạng.
`a, xy - 6xy = -7xy.`
`xy - (-6xy) = 8xy`.
`c, -4x^2yz + 4x^2yz = 0`
`-4x^2yz - 4x^2yz = -8x^2yz`
a) \(xy\) và \(-6x y\) đồng dạng vì có chung biến \(xy\)
\(\Rightarrow xy+\left(-6xy\right)=\left(1+-6\right)xy=-5xy\)
\(\Rightarrow xy-\left(-6xy\right)=\left(1+6\right)xy=7xy\)
b) \(2xy\) và \(xy^2\) không đồng dạng
c) \(-4yzx^2\) và \(4x^2yz\) đồng dạng:
\(\Rightarrow-4yzx^2+4x^2yz=0\)
\(\Rightarrow-4yzx^2-4x^2yz=-8yzx^2\)