Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có đồng dạng
`xy+(-6xy)=-5xy`
`xy-(-6xy)=7xy`
b) Không đồng dạng
c) Có đồng dạng
`-4yzx^{2}+4x^{2}yz=0`
`-4yzx^{2}-4x^{2}yz=-8x^{2}yz`
a: \(\dfrac{xy^2}{xy-y}=\dfrac{y\cdot xy}{y\cdot\left(x-1\right)}=\dfrac{xy}{x-1}\)
=>Hai phân thức này bằng nhau
b: \(\dfrac{xy+y}{x}=\dfrac{y\left(x+1\right)}{x}\)
\(\dfrac{xy+x}{y}=\dfrac{x\left(y+1\right)}{y}\)
Vì \(\dfrac{y\left(x+1\right)}{x}\ne\dfrac{x\left(y+1\right)}{y}\)
nên hai phân thức này không bằng nhau
c: \(\dfrac{-6}{4y}=\dfrac{-6:2}{4y:2}=\dfrac{-3}{2y}\)
\(\dfrac{3y}{-2y^2}=\dfrac{-3y}{2y^2}=\dfrac{-3y}{y\cdot2y}=\dfrac{-3}{2y}\)
Do đó: \(\dfrac{-6}{4y}=\dfrac{3y}{-2y^2}\)
=>Hai phân thức này bằng nhau
`a, (xy^2)/(xy+y) = (xy^2)/(y(x+1))`
`=(xy)/(x+1)`
Vậy `2` cặp phân thức bằng nhau.
`b, (xy-y)/x = (y(x-1))/x = (y^2(x-1))/(xy)`
`(xy-x)/y = (x(y-1))/y = (x^2(y-1))/(xy)`
Vậy `2` đa thức không bằng nhau
a) Ta có: \(12x{y^2}x = 12.\left( {x.x} \right).{y^2} = 12{x^2}{y^2}\)
Đơn thức trên có hệ số là \(12\), bậc bằng \(2 + 2 = 4\).
b) Ta có: \( - y\left( {2z} \right)y = - 2.\left( {y.y} \right).z = - 2{y^2}z\)
Đơn thức trên có hệ số là \( - 2\), bậc bằng \(2 + 1 = 3\).
c) Ta có: \({x^3}yx = \left( {{x^3}.x} \right).y = {x^4}y\)
Đơn thức trên có hệ số là \(1\), bậc bằng \(4 + 1 = 5\).
d) Ta có: \(5{x^2}{y^3}{z^4}y = 5{x^2}.\left( {{y^3}.y} \right).{z^4} = 5{x^2}{y^4}{z^4}\)
Đơn thức trên có hệ số là \(5\), bậc bằng \(2 + 4 + 4 = 10\).
a: 1/x^2y=1/x^2y
3/xy=3x/x^2y
b: \(\dfrac{x}{x^2+2xy+y^2}=\dfrac{x}{\left(x+y\right)^2}\)
\(\dfrac{2x}{x^2+xy}=\dfrac{2}{x+y}=\dfrac{2x+2y}{\left(x+y\right)^2}\)
a) \(-xy\cdot2x^3y^4\cdot-\dfrac{5}{4}x^2y^3\)
\(=\left(-1\cdot2\cdot-\dfrac{5}{4}\right)\cdot\left(x\cdot x^3\cdot x^2\right)\cdot\left(y\cdot y^4\cdot y^3\right)\)
\(=\dfrac{5}{2}x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(\dfrac{5}{2}\)
Biến: \(x^6y^8\)
b) \(5xyz\cdot4x^3y^2\cdot-2x^5y\)
\(=\left(5\cdot4\cdot-2\right)\cdot\left(x\cdot x^3\cdot x^5\right)\cdot\left(y\cdot y^2\cdot y\right)\cdot z\)
\(=-40x^9y^4z\)
Bậc là: \(9+4=13\)
Hệ số: \(-40\)
Biến: \(x^9y^4z\)
c) \(-2xy^5\cdot-x^2y^2\cdot7x^2y\)
\(=\left(-2\cdot-1\cdot7\right)\cdot\left(x\cdot x^2\cdot x^2\right)\cdot\left(y^5\cdot y^2\cdot y\right)\)
\(=14x^6y^8\)
Bậc là: \(6+8=14\)
Hệ số: \(14\)
Biến: \(x^6y^8\)
Đơn thức `a, c` đồng dạng.
`a, xy - 6xy = -7xy.`
`xy - (-6xy) = 8xy`.
`c, -4x^2yz + 4x^2yz = 0`
`-4x^2yz - 4x^2yz = -8x^2yz`
a) \(xy\) và \(-6x y\) đồng dạng vì có chung biến \(xy\)
\(\Rightarrow xy+\left(-6xy\right)=\left(1+-6\right)xy=-5xy\)
\(\Rightarrow xy-\left(-6xy\right)=\left(1+6\right)xy=7xy\)
b) \(2xy\) và \(xy^2\) không đồng dạng
c) \(-4yzx^2\) và \(4x^2yz\) đồng dạng:
\(\Rightarrow-4yzx^2+4x^2yz=0\)
\(\Rightarrow-4yzx^2-4x^2yz=-8yzx^2\)