Tứ giác \(ABCD\) có góc ngoài tại đỉnh \(A\) bằng \(65^\circ \), góc ngoài tại đỉnh \(B\) bằng \(100^\circ \), góc ngoài tại đỉnh \(C\) bằng \(60^\circ \). Tính số đo góc ngoài tại đỉnh \(D\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi góc ngoài đỉnh B là x
Ta có:
$\widehat {B} + x = 180^0 $
`=>`$ \widehat {B} + 110^0 = 180^0$
`=>` $\widehat {B} = 70^0$
Xét tứ giác ABCD:
$\widehat {A} + \widehat {B} + \widehat {C} + \widehat {D}= 360^0$
`=>` $100^0 + 70^0 + 75^0 + \widehat {D} = 360^0$
`=>` $\widehat {D} = 115^0$
Vậy, $\widehat {D} = 115^0.$
Đáp án cần chọn là: A
Gọi góc ngoài tại 4 đỉnh A, B, C, D của tứ giác ABCD lần lượt là A 1 ^ ; B 1 ^ ; C 1 ^ ; D 1 ^ .
Khi đó ta có :
A ^ + A 1 ^ = 180 ° ⇒ A 1 ^ = 180 ° - A ^ ; B ^ + B 1 ^ = 180 ° ⇒ B 1 ^ = 180 ° - B ^ ; C ^ + C 1 ^ = 180 ° ⇒ C 1 ^ = 180 ° - C ^ ; D ^ + D 1 ^ = 180 ° ⇒ D 1 ^ = 180 ° - D ^ ;
Suy ra
A 1 ^ + B 1 ^ + C 1 ^ + D 1 ^ = 180 ° - A ^ + 180 ° - B ^ + 180 ° - C ^ + 180 ° - D ^ = 720 ° - A ^ + B ^ + C ^ + D ^ = 720 ° - 360 ° = 360 °
Vậy tổng số đo các góc ngoài tại 4 đỉnh A, B, C, D là 360 ° .
Mà tổng số đo góc ngoài tại hai đỉnh B, C bằng 200 ° nên tổng số đo góc ngoài tại hai đỉnh A, D bằng 360 ° - 200 ° = 160 °
Đáp án cần chọn là: A
Xét tứ giác ABCD có A ^ + B ^ + C ^ + D ^ = 360 ° (định lí)
Hay 50 ° + B ^ + 150 ° + 45 ° = 360 °
⇒ B ^ = 360 ° - 50 ° - 150 ° - 45 ° = 115 °
Nên góc ngoài tại đỉnh B có số đo là 180 ° - B ^ = 180 ° - 115 ° = 65 °
Đáp án cần chọn là: C
C D x ^ là góc ngoài đỉnh D.
Tứ giác ABCD có: D ^ = 360 ° - A ^ + B ^ + C ^ = 360 ° - 65 ° + 117 ° + 71 ° = 107 °
Vì A D C ^ và C D x ^ là hai góc kề bù nên
C D x ^ = 180 ° - D ^ = 180 ° - 107 ° = 73 °
a) Có: góc ACB + góc ACx = 180 độ (kề bù)
=> góc ACB = 70 độ
Mà góc BAC + góc ABC + góc ACB = 180 độ (định lý tổng 3 góc tam giác)
=> Góc ABC = 60 độ
b) Có: góc CAy + góc BAC = 180 độ ( kề bù)
=> góc CAy = 130 độ
góc ABC + góc ABz = 180 độ (kề bù)
=> góc ABz = 120 độ
Ta có: \(\widehat{C1}+\widehat{C2}=180^o\)(kề bù)
\(\widehat{C1}+110^o=180^o\)
\(\widehat{C1}=180^o-110^o=70^o\)
\(\Rightarrow\widehat{C1}=70^o\)
Xét tam giác ABC, ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(50^o+\widehat{B}+70^o=180^o\)
\(\widehat{B}=180^o-\left(50^o+70^o\right)=60^o\)
\(\Rightarrow\widehat{B}=60^o\)
Vì \(\widehat{B1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
=> \(\widehat{B1}=\widehat{A}+\widehat{C}=50^o+70^o=120^o\)
Vì \(\widehat{A1}\)là số đo góc ngoài tại đỉnh A của tam giác ABC
\(\Rightarrow\widehat{A1}=\widehat{B}+\widehat{C}=70^o+60^o=130^o\)
Xét hình tứ giác ABCD có:
\(A+B+C+D=360^0\) (đ/l.....)
=>\(D=360^0-\left(A+B+C\right)=360^0-\left(65^0+117^0+71^0\right)=107^0\)
=>số đo góc ngoài ở đỉnh D là : 1800-1070=730
Số đo góc D là: 360o - 65o - 117o - 68o = 110o
Số đo góc ngoài đỉnh D: 180o - 110o = 70o
Số đo góc ngoài tại đỉnh D là:
\(180^0-\left(360^0-65^0-117^0-68^0\right)=70^0\)
\(a,\widehat{C}=180^0-\widehat{A}-\widehat{B}=75^0\\ b,=180^0-\widehat{C}=105^0\\ c,\text{Đề trùng câu b}\)
a) Xét tam giác ABC có:
\(\widehat{BAC}\) \(\text{+}\) \(\widehat{ABC}\) \(\text{+}\) \(\widehat{ACB}\) \(=180^o\) (Tổng 3 góc trong tam giác).
Thay số: \(60^o+45^o+\) \(\widehat{ACB}\) \(=180^o\).
\(\Rightarrow\) \(\widehat{ACB}\) \(=75^o.\)
b) Số đo góc ngoài đỉnh C là:
\(180^o-\) \(\widehat{ACB}\) = \(180^o-\) \(75^o=105^o.\)
Số đo góc ngoài tại đỉnh \(D\) là: \(360^\circ - \left( {65^\circ + 100^\circ + 60^\circ } \right) = 135^\circ \)