Với hai số a,b bất kì, thực hiện phép tính \(\left( {a + b} \right)\left( {a - b} \right)\).
Từ đó rút ra liên hệ giữa \({a^2} - {b^2}\) và \(\left( {a + b} \right)\left( {a - b} \right)\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}\left( {a + b} \right).\left( {{a^2} - ab + {b^2}} \right) = a.{a^2} - a.ab + a.{b^2} + b.{a^2} - b.ab + b.{b^2}\\ = {a^3} - {a^2}b + a{b^2} + {a^2} - a{b^2} + {b^3}\\ = {a^3} + {b^3}\end{array}\)
\(\left(a+b\right)\cdot\left(a+b\right)=a^2+ab+ab+b^2=a^2+2ab+b^2\)
Vậy \(\left(a+b\right)^2=a^2+2ab+b^2.\)
\(\begin{array}{l}\left( {a + b} \right){\left( {a + b} \right)^2} = \left( {a + b} \right).\left( {{a^2} + 2ab + {b^2}} \right) = a.{a^2} + a.2ab + a.{b^2} + b.{a^2} + b.2ab + b.{b^2}\\ = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\\ = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\end{array}\)
\(\begin{array}{l}a)\left( {a + b} \right){\left( {a + b} \right)^2}\\ = \left( {a + b} \right)\left( {{a^2} + 2{\rm{a}}b + {b^2}} \right)\\ = {a^3} + 2{{\rm{a}}^2}b + a{b^2} + b{a^2} + 2{\rm{a}}{b^2} + {b^3}\\ = {a^3} + 3{{\rm{a}}^2}b + 3{\rm{a}}{b^3} + {b^3}\end{array}\)
\(\begin{array}{l}b)\left( {a - b} \right){\left( {a - b} \right)^2}\\ = \left( {a - b} \right)\left( {{a^2} - 2{\rm{a}}b + {b^2}} \right)\\ = {a^3} - 2{{\rm{a}}^2}b + a{b^2} - b{a^2} + 2{\rm{a}}{b^2} - {b^3}\\ = {a^3} - 3{{\rm{a}}^2}b + 3{\rm{a}}{b^3} - {b^3}\end{array}\)
\(a)\left( {a + b} \right)\left( {{a^2} - ab + {b^2}} \right) = {a^3} - {a^2}b + a{b^2} + b{a^2} - a{b^2} + {b^3} = {a^3} + {b^3}\)
\(b)\left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right) = {a^3} + {a^2}b + a{b^2} - b{a^3} - a{b^3} - {b^3} = {a^3} - {b^3}\)
\({a^3} + \left( { - {b^3}} \right) = \left[ {a + \left( { - b} \right)} \right]\left[ {{a^2} - a.\left( { - b} \right) + {{\left( { - b} \right)}^2}} \right] = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
Từ đó ta có \({a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right)\)
a)
Cách 1: Diện tích hình vuông MNPQ là: \({a^2} + ab + ab + {b^2} = {a^2} + 2{\rm{a}}b + {b^2}\)
Cách 2: Độ dài cạnh của hình vuông MNPQ là: \(a + b\)
Diện tích của hình vuông MNPQ là: \(\left( {a + b} \right).\left( {a + b} \right) = {\left( {a + b} \right)^2}\)
b) \(\left( {a + b} \right)\left( {a + b} \right) = a.a + ab + ab + b.b = {a^2} + 2{\rm{a}}b + {b^2}\)
c) \(\left( {a - b} \right)\left( {a - b} \right) = a.a - a.b - a.b - b.\left( { - b} \right) = {a^2} - 2{\rm{a}}b + {b^2}\)
\({\left( {a - b} \right)^3} = {\left[ {a + \left( { - b} \right)} \right]^3} = {a^3} + 3.{a^2}.\left( { - b} \right) + 3.a.{\left( { - b} \right)^2} + {\left( { - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
Từ đó ta có \({\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\)
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)
Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)
Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)
\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)
*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)
\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)
Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*
*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị
Tuyệt quá,
Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)
có hằng số k tốt nhất là 10.
Tức là bài toán này đúng với mọi \(k\le10\)!
\(\left( {a + b} \right)\left( {a - b} \right) = a.a - ab + b.a - b.b = {a^2} - {b^2} + \left( { - ab + ba} \right) = {a^2} - {b^2}\)
Từ đó ta được \({a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\)