làm sao để chứng minh 3 + 3^2 + 3^3 + ..... + 3^89+3^90 chia hết cho 4, 13 và 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{88}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{88}.13\)
\(=13\left(3+3^4+...+3^{88}\right)\) chia hết cho \(13\)
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
A = \(3+3^2+3^3+.......+3^{89}+3^{90}\)
a)
Số số hạng của A là :
(90 - 1) : 1 + 1 = 90 (số)
b)
A = \(3\left(1+3\right)+3^3\left(1+3\right)+3^5\left(1+3\right)+.......+3^{89}\left(1+3\right)\)
=> A = \(3\cdot4+3^3\cdot4+3^5\cdot4+.......+3^{89}\cdot4\)
=> A = \(\left(3+3^3+3^5+.....+3^{89}\right)\cdot4⋮4\)
A = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)+.......+3^{87}\left(1+3+3^2\right)\)
=> A = \(13\left(3+3^4+3^7+......+3^{87}\right)⋮13\)
\(A=3+3^2+3^3+3^4+...+3^{90}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)+...+\left(3^{86}+3^{87}+3^{88}+3^{89}+3^{90}\right)\)
\(=3.\left(1+3+3^2+3^3+3^4\right)+...+3^{86}\left(1+3+3^2+3^3+3^4\right)\)
\(=3.121+...+3^{36}.121\)
\(=121\left(3+...+3^{86}\right)⋮11\left(dpcm\right)\)
\(A=3+3^2+3^3+3^4+...+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=\left(3+3^2+3^3\right)+\left(3^3.3+3^3.3^2+3^3.3^3\right)+...+\left(3^{87}.3+3^{87}.3^2+3^{87}.3\right)\)
\(=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)
\(=39.1+3^3.39+...3^{87}.39\)
\(=39\left(3^3+1+...+3^{87}\right)\)
\(=13.3\left(3^3+1+...+3^{87}\right)⋮13\left(dpcm\right)\)
Ta có B=(3+3^2)+(3^3+3^4)+...+(3^89+3^90)
B=3(1+3)+3^3(3+1)+...+3^89(1+4)
B=3.4 + 3^3.4 + 3^89.4
B= 4(3.3^3....3^89) chia hết cho4
Do B chia hết cho 3 nên B chia hết cho 12 [ vì (4;3)=1]
còn câu c bạn làm tương tự nha
`#3107.101107`
\(B=4+4^2+4^3+...+4^{89}+4^{90}\)
\(=\left(4+4^2+4^3\right)+...+\left(4^{88}+4^{89}+4^{90}\right)\)
\(=4\left(1+4+4^2\right)+...+4^{88}\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right)\left(4+...+4^{88}\right)\)
\(=21\left(4+4^{88}\right)\)
Vì \(21\left(4+4^{88}\right)\) `\vdots 21`
`\Rightarrow B \vdots 21`
Vậy, `B \vdots 21.`
Lời giải:
$A=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{88}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{88})=13(3+3^4+...+3^{88})\vdots 13$
--------------------
$A=(3+3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9+3^{10})+...+(3^{86}+3^{87}+3^{88}+3^{89}+3^{90})$
$=3(1+3+3^2+3^3+3^4)+3^6(1+3+3^2+3^3+3^4)+...+3^{86}(1+3+3^2+3^3+3^4)$
$=(1+3+3^2+3^3+3^4)(3+3^6+...+3^{86})$
$=121(3+3^6+...+3^{86})=11.11.(3+3^6+...+3^{86})\vdots 11$
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)=\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)=\)
\(=4\left(3+3^3+3^5+...+3^{89}\right)⋮4\)
Ta có
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)=\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{88}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+...+3^{88}\right)⋮13\)
Ta nhận thấy \(A⋮3\) và \(A⋮4\) (cmt) => A đồng thời chia hết cho 3 và cho 4 mà 3 và 4 là 2 số nguyên tố cùng nhau => \(A⋮3.4\Rightarrow A⋮12\)