Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của
P= 1/abc + 1/(a^2+b^2+c^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vi a + b + c = 1 nên bt tương đương với \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Ta có : \(P=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\)( 1 )
Mặt khác :\(\left(ab+bc+ca\right)^2\left(a^2+b^2+c^2\right)\le\left(\frac{\left(a+b+c\right)^2}{3}\right)^3=\frac{1}{27}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow P\le\frac{1}{3}.\frac{1}{27}=\frac{1}{81}\)
Dấu "=" xảy ra <=> a = b = c = 1/3
Vậy maxP = 1/81 <=> a = b = c = 1/3
Ta có: 2P=(a2+b2) + (b2+c2) + (c2+a2)
Theo Cauchy có:
\(2P\ge2ab+2bc+2ca=2\left(ab+bc+ca\right)=2.9\)
=> \(P\ge9\)=> Pmin = 9 đạt được khi x=y=\(\sqrt{3}\)
Hoặc:
P2= (a2+b2+c2)(b2+c2+a2)
Theo Bunhiacopxki có:
P2= (a2+b2+c2)(b2+c2+a2) \(\ge\)(ab+bc+ca)2=92
=> P\(\ge\)9 => Pmin=9
Vì \(a\ge1,b\ge1,c\ge1\)(gt) => \(\left(a-1\right)\left(b-1\right)\ge0\)<=> ab -a -b + 1 \(\ge0\)(1)
\(\left(b-1\right)\left(c-1\right)\ge0\)<=> bc - b - c + 1 \(\ge0\)(2)
\(\left(c-1\right)\left(a-1\right)\ge0\)<=> ca -c - a + 1 \(\ge0\)(3)
Cộng từng vế của (1), (2) và (3) ta được:
ab + bc + ca -2(a +b +c) + 3 \(\ge0\)
=> \(a+b+c\le\frac{ab+bc+ca+3}{2}=\frac{9+3}{2}=6\)
Mà \(a\ge1,b\ge1,c\ge1\Rightarrow a+b+c\ge3\)=> \(3\le a+b+c\le6\)=> \(\left(a+b+c\right)^2\le36\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\le36\)
=> \(a^2+b^2+c^2\le36-2\left(ab+bc+ca\right)=36-2\times9=18\)=> P \(\le18\)
Vậy GTLN của P là 18
Dâu "=" xảy ra khivà chỉ khi:
a =b=1, c=4
hoặc: b=c=1, a=4
hoặc: c=a=1, b=4
Ta có : 0 ≤ a ≤ b + 1 ≤ c + 2
=> a + b + 1 + c + 2 ≤ 3( c + 2 )
=> a + b + c + 3 ≤ 3c + 6
=> a + b + c ≤ 3c + 3
vì a + b + c = 1 => 3c + 3 ≥ 1 => 3c ≥ - 2 <=> c ≥ \(-\frac{2}{3}\)
Để c đạt giá trị nhỏ nhất <=> c = \(-\frac{2}{3}\)
=> a + b = \(1-\left(-\frac{2}{3}\right)\)= \(\frac{5}{3}\)
Ta lại có: 0 ≤ a ≤ b + 1
=> a + b ≤ 2b + 1
=> \(\frac{5}{3}\)≤ 2b + 1
=> 2b ≥ \(\frac{2}{3}\) => b ≥ \(\frac{1}{3}\)
mà b + 1 ≤ c + 2 => b ≤ \(-\frac{2}{3}+1\) => b ≤ \(\frac{1}{3}\)
=> b = \(\frac{1}{3}\)
mà a + b = \(\frac{5}{3}\) => a = \(\frac{4}{3}\)
Vậy GTNN c = \(-\frac{2}{3}\) <=> a = \(\frac{4}{3}\); b\(=\frac{1}{3}\)
Ta có : \(P=a^2+b^2+c^2\)
\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)
\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)
\(\Rightarrow P\ge-2\)
Vậy MinP = -2 tại a + b + c = 0 .
Mik thấy a,b,c>0 \(\Rightarrow a+b+c>0\)
\(\Rightarrow2P-2=2a^2+2b^2+2c^2-2ab-2bc-2ca=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\Rightarrow2P\ge2\Rightarrow P\ge1\) Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\) Vậy...
\(P=\dfrac{1}{abc}+\dfrac{1}{a^2+b^2+c^2}=\dfrac{a+b+c}{abc}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\left(1\right)\)
\(\)\(\left\{{}\begin{matrix}a+b+c=1\\\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge\dfrac{9}{ab+bc+ac}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow P\ge\dfrac{9}{ab+bc+ac}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{2\left(ab+bc+ac\right)}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{17}{2\left(ab+bc+ac\right)}\)
\(\Rightarrow P\ge9+\dfrac{17}{2\left(ab+bc+ac\right)}\)
mà \(ab+bc+ac\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\)
\(\Rightarrow P\ge9+\dfrac{17}{2.\dfrac{1}{3}}=9+\dfrac{17.3}{2}=\dfrac{18+17.3}{2}=\dfrac{69}{2}\)
\(\Rightarrow Min\left(P\right)=\dfrac{69}{2}\)