5/5x10 + 5/10x15 + ..... + 5/90x95 + 5/95x100
các bạn giải giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5/5x10+5/10x15+5/15x20+...+5/95x100)
= (1/5-1/10+1/10-1/15+1/15-1/20+....+1/95-1/100):5
=(1/5-1/100):5
=19/500
Đặt A = 1/5x10 + 1/10x15 + 1/15x20 + 1/20x25 + ... + 1/95x100
A x 5 = 5/5x10 + 5/10x15 + 5/15x20 + 5/20x25 + ... + 5/95x100
A x 5 = 1/5 - 1/10 + 1/10 - 1/15 + 1/15 - 1/20 + 1/20 - 1/25 + ... + 1/95 - 1/100
A x 5 = 1/5 - 1/100
A x 5 = 19/100
A = 19/100 : 5
A = 19/100 x 1/5
A = 19/500
Vậy A= 19/500
N = 1/1x5 + 1/5x10 + 1/10x15 + 1/15x20 + .....+1/2005 x 2010
N = 1 - 1/5 +1/5-1/5+1/10-1/15+1/5-1/20+.....+1/2005-1/2010
N = 1 - 1/2010
N = 2009/2010
Ta có:
\(N=\frac{1}{1x5}+\frac{1}{5x10}+\frac{1}{10x15}...+\frac{1}{2005x2010}\)
\(\Rightarrow Nx5=\left(\frac{1}{1x5}+\frac{1}{5x10}+\frac{1}{10x15}...+\frac{1}{2005x2010}\right)x5\)
\(=\frac{5}{1x5}+\frac{5}{5x10}+\frac{5}{10x15}...+\frac{5}{2005x2010}\)
\(=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}\)
\(=\frac{2009}{2010}\)
\(\Rightarrow N=\frac{2009}{2010}:5=\frac{2009}{2010}x\frac{1}{5}=\frac{2009}{10050}\)
Ta có:
\(\frac{5}{1\cdot7}+\frac{5}{7\cdot13}+\frac{5}{13\cdot19}+...+\frac{5}{91\cdot97}\)
= \(5\cdot\frac{1}{6}\cdot\left(\frac{6}{1\cdot7}+\frac{6}{7\cdot13}+\frac{6}{13\cdot19}+...+\frac{6}{91\cdot97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{7}+\frac{1}{7}-\frac{1}{13}+\frac{1}{13}-\frac{1}{19}+...+\frac{1}{91}-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\left(1-\frac{1}{97}\right)\)
= \(\frac{5}{6}\cdot\frac{96}{97}\)
= \(\frac{80}{97}\)
5/1.7 + 5/7.13 + 5/13.19 + ... + 5/91.97
= 5/6.(1 - 1/7 + 1/7 - 1/13 + 1/13 - 1/19 + ... + 1/91 - 1/97)
= 5/6.(1 - 1/97)
= 5/6.96/97
= 80/97
(x-5)4 = (x-5)6
(x-5)4 - ( x-5)6 = 0
(x-5)4.{ 1 - (x-5)2 }= 0
\(\left[{}\begin{matrix}x-5=0\\(x-5)^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x-5=1\\x-5=-1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=6\\x=4\end{matrix}\right.\)
\(x\in\) { 4; 5; 6}
\(=5\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\right)\)
\(=5\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{8}\right)\)
\(=5\cdot\dfrac{5}{24}=\dfrac{25}{24}\)
`5/12 + 5/20 + 5/30 + 5/42 + 5/56`
`= 5/(3.4) + 5/(4.5) + 5/(5.6) + 5/(6.7) + 5/(7.8)`
`= 5 . (1/(3.4) + 1/(4.5) + ... + 5/(7.8))`
`= 5 . (1/3 - 1/4 + 1/4 - 1/5 + ...+ 1/7 - 1/8)`
`= 5 . (1/3 - 1/8) `
`= 5 . 5/24 = 25/24`
`S_1 = 5/(1.4) + 5/(4.7) +...+ 5/(97.100)`
`S_1 = 5 (1/(1.4) + 1/(4.7) +...+ 1/(97.100))`
`S_1 = 5/3 (3/(1.4) + 3/(4.7) +...+ 3/(97.100))`
`S_1 = 5/3 (1 - 1/4 + 1/4 - 1/7 + ...+ 1/97 - 1/100)`
`S_1 = 5/3 (1 - 1/100)`
`S_1 = 5/3 . 99/100`
`S_1 = 33/20`
\(\frac{5}{5\times10}+\frac{5}{10\times15}+....+\frac{5}{95\times100}\)
\(=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)
\(=\frac{1}{5}-\frac{1}{100}=\frac{19}{100}\)
P/s: Vì tử bằng khoảng cách dưới mẫu nên ta có thể rút nhanh vậy
kết quả đúng là
\(\frac{19}{100}\)