Cho a > 0, chứng minh rằng
\(\sqrt{a}+9< \sqrt{a}+3\)\(3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ge0,x\ne9\)
\(B=\dfrac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}=0\left(đk:x\ge0\right)\)\(\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\left(tm\right)\)
a) \(\sqrt{a}+1>\sqrt{a+1}\)\(\Leftrightarrow\)\(a+2\sqrt{a}+1>a+1\)\(\Leftrightarrow\)\(2\sqrt{a}>0\)( luôn đúng \(\forall x>0\) )
b) \(a-1< a\)\(\Leftrightarrow\)\(\sqrt{a-1}< \sqrt{a}\)
c) \(\left(\sqrt{6}-1\right)^2=6-2\sqrt{6}+1>3-2\sqrt{3.2}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
do \(\sqrt{6}-1>0;\sqrt{3}-\sqrt{2}>0\) nên \(\sqrt{6}-1>\sqrt{3}-\sqrt{2}\) ( đpcm )
Kết hợp Mincôpxki và C-S:
\(VT\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{a+c}\right)^2+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}=\sqrt{\frac{405}{4\left(a+b+c\right)^2}+\frac{81}{\left(a+b+c\right)^2}+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\frac{405}{12\left(a^2+b^2+c^2\right)}+2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=\sqrt{\frac{405}{12.3}+18}=\frac{3\sqrt{13}}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
\(\sqrt{a}\)+ 9 = a2 +9
\(\sqrt{a}\)+ 33 =a2 +33
vì a2 =a2 mà 9<33 \(\Rightarrow\)\(\sqrt{a}\) +9 <\(\sqrt{a}\)+33