Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(3\left(a^2+b^2+c^2\right)=\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\left(a+b+c\right)^2\le3.3=9\)hay \(a+b+c\le3\)(do \(a^2+b^2+c^2=3\))
Theo bất đẳng thức Mincopxki và bất đẳng thức Bunyakovsky dạng phân thức, ta được:
\(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)
\(\ge\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(\ge\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\)
Đến đây, ta cần chứng minh rằng: \(\sqrt{9\left[\frac{9}{2\left(a+b+c\right)}\right]^2+\left(a+b+c\right)^2}\ge\frac{3\sqrt{13}}{2}\)(*)
Đặt \(t=a+b+c\Rightarrow0< t\le3\)
Khi đó, (*) trở thành \(\sqrt{9\left(\frac{9}{2t}\right)^2+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow9\left(\frac{9}{2t}\right)^2+t^2\ge\frac{117}{4}\)
\(\Leftrightarrow\frac{\left(t-3\right)\left(2t-9\right)\left(t+3\right)\left(2t+9\right)}{4t^2}\ge0\)(đúng với mọi \(0< t\le3\))
Đẳng thức xảy ra khi a = b = c = 1
Lời giải:
Sửa đề: \(\frac{1}{(a+b+\sqrt{2(a+c)})^3}+\frac{1}{(b+c+\sqrt{2(b+a)})^3}+\frac{1}{(c+a+\sqrt{2(b+c)})^3}\leq \frac{8}{9}\)
--------------------------
Áp dụng BĐT AM-GM:
\(a+b+\sqrt{2(a+c)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\geq 3\sqrt[3]{\frac{(a+b)(a+c)}{2}}\)
\(\Rightarrow [a+b+\sqrt{2(a+c)}]^3\geq \frac{27}{2}(a+b)(a+c)\)
\(\Rightarrow \frac{1}{(a+b+\sqrt{2(a+c)})^3}\leq \frac{2}{27(a+b)(a+c)}\)
Hoàn toàn tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}\leq \frac{4(a+b+c)}{27(a+b)(b+c)(c+a)}(1)\)
Lại theo BĐT AM-GM:
\((a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8}{9}(a+b+c)(ab+bc+ac)(2)\)
Và:
\(16(a+b+c)\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\geq \frac{3(a+b+c)}{ab+bc+ac}\)
\(\Rightarrow ab+bc+ac\geq \frac{3}{16}(3)\)
Từ \((1);(2);(3)\Rightarrow \text{VT}\leq \frac{1}{6(ab+bc+ac)}\leq \frac{1}{6.\frac{3}{16}}=\frac{8}{9}\) (đpcm)
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
Điểm rơi \(a=b=c=1\) nếu thay vào dễ thấy đề sai.
\(3.\sqrt{\frac{9}{\left(1+1\right)^2}+1^2}=\frac{3\sqrt{13}}{2}\)
Nếu giả thiết của em là đúng thì bài tương tự ở đây :D
Áp dụng BĐT Bu-nhi-a-cốp-xki ta có :
\(\sum\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)
\(=\sqrt{9\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\frac{729}{4\left(a+b+c\right)^2}+\left(a+b+c\right)^2}=\frac{3\sqrt{13}}{2}\)
Is that true ?? \("="\Leftrightarrow a=b=c=1\)
1. Áp dụng Min - cốp - ski, ta được: \(\sqrt{\frac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\frac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\frac{9}{\left(c+a\right)^2}+b^2}\)\(\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{c+a}\right)^2+\left(a+b+c\right)^2}\)\(\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}\)(Bunyakovsky dạng phân thức)
Đặt \(t=a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)thì ta cần chứng minh: \(\sqrt{\frac{729}{4t^2}+t^2}\ge\frac{3\sqrt{13}}{2}\Leftrightarrow\frac{729}{4t^2}+t^2\ge\frac{117}{4}\)\(\Leftrightarrow\frac{\left(t+3\right)\left(t-3\right)\left(2t+9\right)\left(2t-9\right)}{4t^2}\ge0\)*đúng bởi \(t-3\le0;t+3>0;2t+9>0;2t-9< 0;4t^2>0\)*
Đẳng thức xảy ra khi t = 3 hay a = b = c = 1
2. Ta có: \(\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}-3=\frac{\left(x^2-y^2\right)^2\left(x^4+y^4+x^2y^2\right)}{x^2y^2\left(x^2+y^2\right)^2}\ge0\)\(\Rightarrow\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge3\)
Đẳng thức xảy ra khi x = y
https://hoc24.vn/hoi-dap/question/620649.html
Kết hợp Mincôpxki và C-S:
\(VT\ge\sqrt{\left(\frac{3}{a+b}+\frac{3}{b+c}+\frac{3}{a+c}\right)^2+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\left(\frac{27}{2\left(a+b+c\right)}\right)^2+\left(a+b+c\right)^2}=\sqrt{\frac{405}{4\left(a+b+c\right)^2}+\frac{81}{\left(a+b+c\right)^2}+\left(a+b+c\right)^2}\)
\(VT\ge\sqrt{\frac{405}{12\left(a^2+b^2+c^2\right)}+2\sqrt{\frac{81\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}}=\sqrt{\frac{405}{12.3}+18}=\frac{3\sqrt{13}}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)