bài 2: viết thành dạng lũy thừa các tích sau:
a) 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2
b) 10 . 10 . 10 . 10 . 10
c) 8 . 8 . 8 . 6 . 6 . 6 . 7 . 7 . 7
d) a . a . a . a . a . a . a . a . a
e) 10000 . 10 . 10 . 10 . 100
f) 2x . 2x . 2x . 2x . 2x
nhanh nha, mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
a) \(7^{15}\)
b)\(162^8\). 2
c)\(10^8\)
d) \(a^0\)
Xin lỗi nha mk hơi vội nên có sai thì bạn châm trc cho mk nha.
1
a) 2x + 3 (đã rút gọn)
b) 5(6 - x^4) = 30 - 5x^4
c) 12(4x + 4)12 = 48x + 48
d) 7x . 8x - 9x - 9 = 56x^2 - 9x - 9
e) 8 - x^3 (đã rút gọn)
f) 6x + 8x . 1 = 6x + 8x = 14x
g) 9 . 10x - 8 + 7 = 90x - 8 + 7 = 90x - 1
h) 7x + 9 + 8x - 1 = 15x + 8
2
a) 2^10 : 8^2 = (2^10) / (8^2) = (2^10) / (2^6) = 2^(10-6) = 2^4 = 16
b) 125 : 5^2 = 125 / (5^2) = 125 / 25 = 5
c) 64^2 : 2^3 . 8^7 = (64^2) / (2^3 . 8^7) = (2^6)^2 / (2^3 . (2^3)^7) = 2^12 / (2^3 . 2^21) = 2^(12 - 3 - 21) = 2^(-12)
d) 3^4 : 9 = 81 / 9 = 9
e) 8^2 . 4^2 = (8^2) . (4^2) = 64 . 16 = 1024 f) 5^2 . 10^2 : 5^2 = (5^2) . (10^2) / (5^2) = 100 / 1 = 100
3
A) Để tìm ƯC(12; 136) có thể chuyển sang lũy thừa, ta phân tích 12 và 136 thành các thừa số nguyên tố: 12 = 2^2 * 3 136 = 2^3 * 17 ƯC(12; 136) = 2^2 = 4
B) Để tìm ƯC(25; 300) với điều kiện ƯC chia hết cho 3 và 9, ta phân tích 25 và 300 thành các thừa số nguyên tố: 25 = 5^2 300 = 2^2 * 3 * 5^2 ƯC(25; 300) = 5^2 = 25 (vì 25 chia hết cho 3 và 9)
C) Để tìm BC(17; 221) với điều kiện là số lẻ và là hợp số, ta phân tích 17 và 221 thành các thừa số nguyên tố: 17 = 17^1 221 = 13 * 17 BC(17; 221) = 17 (vì 17 là số lẻ và là hợp số)
D) Để tìm BC(10; 15) với điều kiện ƯC < 150 và là số nguyên tố, ta phân tích 10 và 15 thành các thừa số nguyên tố: 10 = 2 * 5 15 = 3 * 5 BC(10; 15) = 5 (vì 5 là số nguyên tố và ƯC < 150)
4
a) Để tính S, ta có thể nhận thấy rằng các số mũ của 4 tăng dần từ 2 đến 99. Vậy ta có thể viết lại S như sau: S = 1 * 4^2 * 4^3 * 4^4 * ... * 4^98 * 4^99 = 4^(2 + 3 + 4 + ... + 98 + 99) = 4^(2 + 3 + 4 + ... + 99 + 100 - 1) = 4^(1 + 2 + 3 + ... + 100 - 1) = 4^(100 * 101 / 2 - 1) = 4^(5050 - 1) = 4^5049
b) Để chứng minh rằng S chia hết cho 1024, ta cần chứng minh rằng S chia hết cho 2^10 = 1024. Ta có: S = 4^5049 = (2^2)^5049 = 2^(2 * 5049) = 2^10098 Ta thấy rằng 10098 chia hết cho 10 (vì 10098 = 1009 * 10), nên ta có thể viết lại S như sau: S = 2^(2 * 5049) = 2^(2 * 1009 * 10) = (2^10)^1009 = 1024^1009 Vậy S chia hết cho 1024.
5
a) Để xác định thời điểm người đi ô tô bắt kịp bác An, ta cần tính thời gian mà cả hai đã đi. Thời gian mà bác An đã đi: t1 = quãng đường / vận tốc = 60 km / 40 km/h = 1.5 giờ Thời gian mà người đi ô tô đã đi: t2 = quãng đường / vận tốc = 60 km / 80 km/h = 0.75 giờ Vì người đi ô tô đã xuất phát sau bác An, nên thời gian mà người đi ô tô bắt kịp bác An sẽ là thời gian mà cả hai đã đi cộng thêm thời gian nghỉ của bác An: t = t1 + t2 + 15 phút = 1.5 giờ + 0.75 giờ + 15 phút = 2.25 giờ + 0.25 giờ = 2.5 giờ Vậy, người đi ô tô sẽ bắt kịp bác An sau 2.5 giờ.
b) Để tính quãng đường từ A đến B, ta chỉ cần tính tổng quãng đường mà cả hai đã đi: quãng đường từ A đến B = quãng đường của bác An + quãng đường của người đi ô tô = 60 km + 60 km = 120 km Vậy, quãng đường từ A đến B là 120 km.
Lời giải:
a. $=2^8$
b. $=10^5$
c. $=8^3.6^3.7^3=(8.6.7)^3=336^3$
d. $=a^9$
e. $=10000.10^3.100=10^4.10^3.10^2=10^{4+3+2}=10^9$
f. $=(2x)^5$
Bài \(2\)
\(a)\) \(2.2.2.2.2.2.2.2=2^8\)
\(b)\) \(10.10.10.10.10=10^5\)
\(c)\) \(8.8.8.6.6.7.7.7=8^3.6^2.7^3\)
\(d)\) \(a.a.a.a.a.a.a.a.a=a^9\)
\(e)\) \(10000 . 10 . 10 . 10 . 100\)
\(=10^4.10.10.10.10^2=10^9\)
\(f)\) \(2x.2x.2x.2x.2x=\left(2x\right)^5\)