K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2023

\(x^3-4x^2-9x+36=0\)

\(x^2\left(x-4\right)-9\left(x-4\right)=0\)

\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)

\(\Rightarrow x-4=0\) hay \(x^2-9=0\)

\(\Rightarrow x=4\) hay \(x^2=9=3^2\)

\(\Rightarrow x=4\) hay \(x=\pm3\)

TH
Thầy Hùng Olm
Manager VIP
13 tháng 7 2023

⇔x2(x-4) -9(x-4) = 0

⇔(x-4).(x-3).(x+3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

30 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

30 tháng 12 2015

x.y=36 khi đó chỉ có x=6 và y=6

mà x+y=9 =>x=6 y=6(k thỏa mãm)

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

AH
Akai Haruma
Giáo viên
1 tháng 1

Bài 3:

b. $B=(x+y)(2x-y)+(xy^4-x^2y^2):(xy^2)$

$=(2x^2-xy+2xy-y^2)+(y^2-x)$

$=2x^2+xy-y^2+y^2-x=2x^2+xy-x$

 

AH
Akai Haruma
Giáo viên
1 tháng 1

Bài 4:
a. $25x^3-10x^2+x=x(25x^2-10x+1)=x(5x-1)^2$
b. $x^2-9x+9y-y^2=(x^2-y^2)-(9x-9y)=(x-y)(x+y)-9(x-y)=(x-y)(x+y-9)$

c. $16-x^2-4y^2-4xy=16-(x^2+4y^2+4xy)$

$=4^2-(x+2y)^2=(4-x-2y)(4+x+2y)$

 

8 tháng 8 2023

a/

\(x^3-4x^2-\left(x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)

b/

\(x^5-9x=0\)

\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

c/

\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)

8 tháng 8 2023

Sos

 

9 tháng 8 2021

1, \(x^3+4x^2+4x=0\Leftrightarrow x\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow x\left(x+2\right)^2=0\Leftrightarrow x=-2;x=0\)

2, \(\left(x+3\right)^2-4=0\Leftrightarrow\left(x+3-2\right)\left(x+3+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=1\)

3, \(x^4-9x^2=0\Leftrightarrow x^2\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=0;\pm3\)

4, \(x^2-6x+9=81\Leftrightarrow\left(x-3\right)^2=9^2\)

\(\Leftrightarrow\left(x-3-9\right)\left(x-3+9\right)=0\Leftrightarrow\left(x-12\right)\left(x+6\right)=0\Leftrightarrow x=-6;x=12\)

5, em xem lại đề nhé

9 tháng 8 2021

à lag tý @@

5, \(x^3+6x^2+9x-4x=0\Leftrightarrow x^3+6x^2+5x=0\)

\(\Leftrightarrow x\left(x^2+6x+5\right)=0\Leftrightarrow x\left(x^2+x+5x+5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+5\right)=0\Leftrightarrow x=-5;x=-1;x=0\)

14 tháng 8 2019

a) \(4x^2-49=0\)

<=> \(\left(2x-7\right)\left(2x+7\right)=0\)

<=> \(\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

b) x2 + 36 = 12x

<=>x2 + 36 - 12x=0

<=> (x-6)2=0

<=> x-6 =0

<=> x=6

14 tháng 8 2019

2 cau cuoi bi sida a ?