Phân tích đa thức thành nhân tử:
(x+y)^2-16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\left(x+y-4\right)\)
\(=x^2-\left(y^2-8y+16\right)=x^2-\left(y-4\right)^2=\left(x-y+4\right)\left(x+y-4\right)\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
\(x^2-y^2+10x-6y+16\)
\(=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2\)
\(=\left(x+5-y-3\right)\left(x+5+y+3\right)\)
\(=\left(x-y+2\right)\left(x+y+8\right)\)
\(x^2-2xy+y^2-16\)
\(=\left(x-y\right)^2-16\)
\(=\left(x-y-4\right)\left(x-y+4\right)\)
p/s: chúc bạn học tốt
\(x^2-2xy+y^2-16\)
\(\Rightarrow\left(x-y\right)^2-16\)
\(\Rightarrow\left(x-y-4\right)\left(x-y+4\right)\)
Code : Breacker
a)
\(2x^2y-8xy^2\\ =2xy\left(x-4y\right)\)
b)
\(x^2-2xy+y^2-16\\ =\left(x^2-2xy+y^2\right)-16\\ =\left(x-y\right)^2-16\\ =\left(x-y-4\right)\left(x-y+4\right)\)
\(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left[\left(x^2-2xy+y^2\right)-4^2\right]\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
\(\left(x+y\right)^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)