Thu gọn các tổng sau:
a) (a –b + c- d) – ( a+ b-+c+d)
b) ( -a + b – c) + ( a – b) – (a – b + c)
c) – ( a- b- c) + ( b – c+d) – ( a-b +c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=a-b+c-d-a-b-c-d=-2b-2d\\ b,=-a+b-c+a-b-a+b-c=-a+b-2c\)
a) ( a - b + c -d ) - ( a+ b + c + d ) = a - b + c - d - a - b - c - d = -2b - 2d
b) ( -a + b -c ) + ( a - b ) - ( a- b + c ) = -a + b - c + a - b - a + b - c = -a + b - c - c = -a + b - 2c
c) - ( a - b - c ) + ( b - c + d ) - ( -a + b + d )
A, (a + b + c - d) - (a + b + c + d)
= a + b + c - d - a - b - c - d
= (a - a) + (b - b) + (c - c) - (d + d)
= 0 + 0 + 0 - 2d
= -2d
Ý b, c em xem lại xem sao chỗ chữ cái viết hoa chỗ lại viết thường là sao em nhỉ?
\(a,\left(a-b+c-d\right)-\left(a+b+c+d\right)\)
\(=a-b+c-d-a-b-c-d\)
\(=-2b-2d\)
\(b,\left(-a+b-c\right)+\left(a-b\right)-\left(a-b+c\right)\)
\(=-a+b-c+a-b-a+b-c\)
\(=-a+b-2c\)
\(c,-\left(a-b-c\right)+\left(b-c+d\right)-\left(-a+b+d\right)\)
\(=-a+b+c+b-c+d+a-b-d\)
\(=b\)
a) ( a - b + c -d ) - ( a+ b + c + d ) = a - b + c - d - a - b - c - d = -2b - 2d
b) ( -a + b -c ) + ( a - b ) - ( a- b + c ) = -a + b - c + a - b - a + b - c = -a + b - c - c = -a + b - 2c
c) - ( a - b - c ) + ( b - c + d ) - ( -a + b + d )
a) (a-b+c-d)-(a+b+c+d)
=a-b+c-d-a-b-c-d
=-2b-2d
=2(b-d)
b) (-a+b-c)+(a-b)-(a-b+c)
=-a+b-c+a-b-a+b-c
=-a+b-2c
c) -(a-b-c)+(b-c+d)-(-a+b+d)
=-a+b+c+b-c+d+a-b-d
=b
1: =a-b+c-a-c=-b
2: =a+b-b+a+c=2a+c
3: =-a-b+c+a-b-c=-2b
4: =ab+ac-ab-ad-ac+ad=0
may cau sau tuong tu pha ngoac ra roi rut gon
a,a+b+c-d-a+b-c+d+a=a+2b
b, -a+b-d+b-c+d+c-b-d=-a+b-d
c,a-b-c+d+b+c=a+d
a) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1\) và \(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\)
\(\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-b}{b}=\dfrac{b\left(k-1\right)}{b}=k-1\\\dfrac{c-d}{d}=\dfrac{d\left(k-1\right)}{d}=k-1\end{matrix}\right.\)\(\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
d) \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)
a) (a - b + c - d) - (a + b - + c + d) = a - b + c - d - a - b + c - d = -2b + 2c - 2d
b) (-a + b - c) + (a - b) - ( a - b + c) = -a + b - c + a - b - a + b - c = -a + b - 2c
c) -(a - b - c) + (b - c + d) - (a - b + c) = -a + b + c + b - c + d - a + b - c = -2a + 3b - c + d
`@` `\text {Ans}`
`\downarrow`
`a)`
`(a -b + c- d) - ( a+ b- +c+d)`
`= a - b + c - d - a - b + c - d`
`= (a-a) + (-b-b) + (c+c) + (-d-d)`
`= -2b + 2c - 2d`
`b)`
` ( -a + b - c) + ( a - b) - (a - b + c)`
`= -a + b - c + a - b - a + b - c`
`= (-a +a - a) + (b - b + b) + (-c-c)`
`= a + b - 2c`
`c)`
\( – ( a- b- c) + ( b – c+d) – ( a-b +c)\)
`= - a + b + c + b - c + d - a + b - c`
`= (-a -a) + (b + b + b) + (c-c-c) + d`
`= -2a + 3b - c + d`