Cho tam giác ABC cân tại A 2 đường cao BE và CF cắt tại H a):tam giác BEC= tam giác CEB b):tam giác AHF = tam giác AHE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đưa đề kỹ, đàng hoàng vào BEC với CEB là 1 tam giác mà. Phải là BEC với CFB chứ: )
Giải:
a
Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\) và AB = AC
Xét tg BEC vuông tại E và tg CFB vuông tại F có:
\(\widehat{ECB}=\widehat{FBC}\left(cmt\right)\)
BC chung
=> ΔBEC = ΔCFB (cạnh huyền - góc nhọn)
b
Có: EC = FB (ΔBEC = ΔCFB)
Mà AB = AC nên AB - FB = AC - EC hay AF = AE
Xét ΔAHF vuông tại F và ΔAHE vuông tại E có:
AF = AE (cmt)
AH chung
=> ΔAHF = ΔAHE (cạnh huyền - góc nhọn)
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
Xét ΔFBH vuông tại F và ΔFCA vuông tại F có
góc FBH=góc FCA
=>ΔFBH đồng dạng vơi ΔFCA
=>FH/FA=BH/AC
=>FH*AC=BH*FA
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
=>CK//BH
=>CK vuông góc AC
=>AK là đường kính của (O)
Xet ΔAKC vuông tại C và ΔAHF vuông tại F có
góc AKC=góc AHF(=góc ABD)
=>ΔAKC đồng dạng với ΔAHF
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hbh
=>BH//CK và BK//CH
=>CK vuông góc AC
Xét ΔACK vuông tại C và ΔAFHvuông tại F có
góc CAK=góc FAH
=>ΔACK đồng dạng với ΔAFH
sửa lại đề :
Cho tam giác abc nhọn (AB<AC). Kẻ các đường cao BD, CE cắt nhau tại H.
CM: a) Tam giác ABD đồng dạng tam giác ACE
b) tam giác AEH đồng dạng tam giác CEB
a,Xét \(\Delta ABD\)và \(\Delta ACE\)có :
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(\widehat{BAC}\)chung
\(\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)
a) Do tam giác \(ABC\) cân tại A nên:
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) và \(AB=AC\)
Xét \(\Delta BEC\) vuông tại E và \(\Delta CFB\) vuông tại F ta có:
\(\widehat{ECB}=\widehat{FBC}\) (cmt)
Cạnh BC chung
\(\Rightarrow\Delta BEC=\Delta CFB\) (cạnh huyền, góc nhọn)
b) Do \(\Delta BEC=\Delta CFB\) (cmt) \(\Rightarrow EB=FC\) (hai cạnh tương ứng)
Ta lại có: \(AB=AC\)
\(\Rightarrow AB-FB=AC-EC\) hay \(AF=AE\)
Xét \(\Delta AHF\) vuông tại F và \(\Delta AHE\) vuông tại E ta có:
\(AF=AE\left(cmt\right)\)
Cạnh AH chung
\(\Rightarrow\Delta AHF=\Delta AHE\) (cạnh huyền, cạnh góc vuông)