K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

a) Do tam giác \(ABC\) cân tại A nên:

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) và \(AB=AC\)

Xét \(\Delta BEC\) vuông tại E và \(\Delta CFB\) vuông tại F ta có:

\(\widehat{ECB}=\widehat{FBC}\)  (cmt)

Cạnh BC chung 

\(\Rightarrow\Delta BEC=\Delta CFB\) (cạnh huyền, góc nhọn)

b) Do \(\Delta BEC=\Delta CFB\) (cmt) \(\Rightarrow EB=FC\) (hai cạnh tương ứng)

Ta lại có: \(AB=AC\)

\(\Rightarrow AB-FB=AC-EC\) hay \(AF=AE\)

Xét \(\Delta AHF\) vuông tại F và \(\Delta AHE\) vuông tại E ta có:

\(AF=AE\left(cmt\right)\)

Cạnh AH chung

\(\Rightarrow\Delta AHF=\Delta AHE\) (cạnh huyền, cạnh góc vuông) 

1 tháng 7 2023

Đưa đề kỹ, đàng hoàng vào BEC với CEB là 1 tam giác mà. Phải là BEC với CFB chứ: )

Giải:

a

Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\) và AB = AC

Xét tg BEC vuông tại E và tg CFB vuông tại F có:

\(\widehat{ECB}=\widehat{FBC}\left(cmt\right)\)

BC chung

=> ΔBEC = ΔCFB (cạnh huyền - góc nhọn)

b

Có: EC = FB (ΔBEC = ΔCFB)

Mà AB = AC nên AB - FB = AC - EC hay AF = AE

Xét ΔAHF vuông tại F và ΔAHE vuông tại E có:

AF = AE (cmt)

AH chung

=> ΔAHF = ΔAHE (cạnh huyền - góc nhọn)

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

Xét ΔFBH vuông tại F và ΔFCA vuông tại F có

góc FBH=góc FCA

=>ΔFBH đồng dạng vơi ΔFCA

=>FH/FA=BH/AC

=>FH*AC=BH*FA

b: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hình bình hành

=>CK//BH

=>CK vuông góc AC

=>AK là đường kính của (O)

Xet ΔAKC vuông tại C và ΔAHF vuông tại F có

góc AKC=góc AHF(=góc ABD)

=>ΔAKC đồng dạng với ΔAHF

a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

góc FHB=góc EHC

=>ΔHFB đồng dạng với ΔHEC

b: Xét tứ giác BHCK có

I là trung điểm chung của BC và HK

=>BHCK là hbh

=>BH//CK và BK//CH

=>CK vuông góc AC

Xét ΔACK vuông tại C và ΔAFHvuông tại F có

góc CAK=góc FAH

=>ΔACK đồng dạng với ΔAFH

22 tháng 4 2020

sửa lại đề :

Cho tam giác abc nhọn (AB<AC). Kẻ các đường cao BD, CE cắt nhau tại H.

CM: a) Tam giác ABD đồng dạng tam giác ACE

b) tam giác AEH đồng dạng tam giác CEB

A B C E D H

a,Xét \(\Delta ABD\)và \(\Delta ACE\)có :

\(\widehat{ADB}=\widehat{AEC}=90^0\)

\(\widehat{BAC}\)chung

\(\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)