Cho A = ( 1/22 - 1).(1/32 -1).(1/42-1)....(1/1002 -1)
So sánh A với -1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
a:
Số số hạng trong dãy M là:
(1002-12):10+1=100(số)
=>Sẽ có 50 cặp (1002;992); (982;972);....;(22;12) có hiệu bằng 10
\(M=1002-992+982-972+...+22-12\)
\(=\left(1002-992\right)+\left(982-972\right)+...+\left(22-12\right)\)
\(=10+10+...+10\)
=10*50=500
b: \(N=\left(202+182+...+42+22\right)-\left(192+172+...+32+12\right)\)
\(=\left(202-192\right)+\left(182-172\right)+...+\left(22-12\right)\)
=10+10+...+10
=10*10=100
Giải:
A=1/22+1/32+1/42+...+1/92
Ta có:
1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
...
1/92<1/8.9
⇒A<1/1.2+1/2.3+1/3.4+...+1/8.9
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
A<1/1-1/9
A<8/9
Ta có:
1/22>1/2.3
1/32>1/3.4
1/42>1/4.5
...
1/92>1/9.10
⇒A>1/2.3+1/3.4+1/4.5+...+1/9.10
A>1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
A>1/2-1/10
A>2/5
Vậy 2/5<A<8/9 (đpcm)
Chúc bạn học tốt!
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)
\(B=0+0+...+0\)
\(B=0\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{\left(-1\right).3}{2^2}.\frac{\left(-2\right).4}{3^2}.\frac{\left(-3\right).5}{4^2}....\frac{\left(-99\right).101}{100^2}\)
Tổng số hạng của A là: 100-2+1=99 (số hạng)
Do số hạng của A là lẻ nên A có giá trị âm
=> \(A=-\frac{1.2.3.4...99.101}{2^2.3.4....100}=-\frac{101}{2.100}< -\frac{100}{2.100}=-\frac{1}{2}\)
=> \(A< -\frac{1}{2}\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1\right)\)
\(=\left(\frac{-3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-9999}{100^2}\right)\)
\(=-\left(\frac{1.3}{2.2}\right)\left(\frac{2.4}{3.3}\right)\left(\frac{3.5}{4.4}\right)....\left(\frac{99.101}{100.100}\right)\)
\(=-\frac{1.2.3....99}{2.3.4....100}.\frac{3.4.5...101}{2.3.4...100}\)
\(=-\frac{1}{100}.\frac{101}{3}=\frac{-101}{300}\)