Bài 1: a) Cho cotx=3. Tìm:
\(B=\dfrac{2sin^2x+3sinx.cosx}{1-2cos^2x}\)
b) Cho tanx=-3; \(\dfrac{3\pi}{2}< x< 2\pi\)
Tìm: A=\(\sqrt{10}cosx-2sinx+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{3sin^2\left(x\right)-cos^2\left(x\right)}{2sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\dfrac{cos^2\left(x\right)}{sin^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\dfrac{1}{tan^2\left(x\right)}=\dfrac{3}{2}-\dfrac{1}{2}\cdot\left(-\dfrac{3}{2}\right)^2=-3\)
b, \(A=\dfrac{sin^2\left(x\right)-5cos^2\left(x\right)}{2cos^2\left(x\right)}=\dfrac{1}{2}\dfrac{sin^2\left(x\right)}{cos^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\dfrac{1}{cot^2\left(x\right)}-\dfrac{5}{2}=\dfrac{1}{2}\cdot\left(\dfrac{5}{3}\right)^2-\dfrac{5}{2}=\dfrac{55}{18}\)
Lời giải:
a.
\(A=\frac{3}{2}-2(\frac{\cos x}{\sin x})^2=\frac{3}{2}-2.(\frac{1}{\tan x})^2=\frac{3}{2}-\frac{1}{2}(\frac{-3}{2})^2=-3\)
b.
\(A=\frac{1}{2}(\frac{\sin x}{\cos x})^2-\frac{5}{2}=2(\frac{1}{\cot x})^2-\frac{5}{2}=2(\frac{5}{3})^2-\frac{5}{2}=\frac{55}{18}\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)
a: tan x=căn 3
=>sin x/cosx=căn 3
=>sin x=cosx*căn 3
\(A=\dfrac{\left(cosx\cdot\sqrt{3}\right)^2}{\left(cosx\cdot\sqrt{3}\right)^2-cos^2x}=\dfrac{3}{3-1}=\dfrac{3}{2}\)
b: cot x=-căn 3
=>cosx=-sinx*căn 3
\(A=\dfrac{sinx+4\cdot sinx\cdot\sqrt{3}}{2\cdot sinx+sinx\cdot\sqrt{3}}=\dfrac{1+4\sqrt{3}}{2+\sqrt{3}}=\left(4\sqrt{3}+1\right)\left(2-\sqrt{3}\right)\)
=8căn 3-12+2-căn 3
=7căn 3-10
Lời giải:
\(A=\frac{1}{\frac{\sin ^2x-\cos ^2x}{\sin ^2x}}=\frac{1}{1-(\frac{\cos x}{\sin x})^2}=\frac{1}{1-(\frac{1}{\tan x})^2}=\frac{1}{1-(\frac{1}{\sqrt{3}})^2}=\frac{3}{2}\)
\(A=\frac{\sin x-4\cos x}{2\sin x-\cos x}=\frac{1-4.\frac{\cos x}{\sin x}}{2-\frac{\cos x}{\sin x}}=\frac{1-4\cot x}{2-\cot x}=\frac{1-4.(-\sqrt{3})}{2-(-\sqrt{3})}=-10+7\sqrt{3}\)
tan x=1
=>sin x=cosx
\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)
d/
ĐKXĐ: ...
\(\Leftrightarrow tanx-1+cos2x=0\)
\(\Leftrightarrow\frac{sinx}{cosx}-1-\left(sin^2x-cos^2x\right)=0\)
\(\Leftrightarrow\frac{sinx-cosx}{cosx}-\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(\frac{1}{cosx}-sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\left(1\right)\\\frac{1}{cosx}-sinx-cosx=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=0\)
\(\Rightarrow x-\frac{\pi}{4}=k\pi\Rightarrow x=\frac{\pi}{4}+k\pi\)
\(\left(2\right)\Leftrightarrow1-sinx.cosx-cos^2x=0\)
\(\Leftrightarrow sin^2x-sinx.cosx=0\)
\(\Leftrightarrow sinx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow sinx=0\Rightarrow x=k\pi\)
c/
\(\Leftrightarrow sinx.cos2x-sinx+1-cos2x=0\)
\(\Leftrightarrow sinx\left(cos2x-1\right)-\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\cos2x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\2x=k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=k\pi\end{matrix}\right.\)
\(a=\int\dfrac{1}{2tan^2x+5tanx+2}.\dfrac{dx}{cos^2x}\)
Đặt \(tanx=t\Rightarrow dt=\dfrac{dx}{cos^2x}\)
\(I=\int\dfrac{dt}{2t^2+5t+2}=\int\dfrac{dt}{\left(t+2\right)\left(2t+1\right)}=\dfrac{2}{3}\int\left(\dfrac{1}{2t+1}-\dfrac{1}{2t+4}\right)dt\)
\(=\dfrac{1}{3}ln\left|\dfrac{2t+1}{2t+4}\right|+C=\dfrac{1}{3}ln\left|\dfrac{2tanx+1}{2tanx+4}\right|+C\)
Câu b hoàn toàn tương tự
\(\left(tanx-cotx\right)^2=9\Rightarrow tan^2x-2.tanx.cotx+cot^2x=9\)
\(\Rightarrow tan^2x+cot^2x=11\)
\(\left(tanx+cotx\right)^2=tan^2x+cot^2x+2.tanx.cotx=11+2=13\)
\(\Rightarrow tanx+cotx=\pm\sqrt{13}\)
\(tan^4x-cot^4x=\left(tan^2x+cot^2x\right)\left(tan^2x-cot^2x\right)\)
\(=11\left(tanx+cotx\right)\left(tanx-cotx\right)=\pm33\sqrt{13}\)
b:
3/2pi<x<2pi
=>cosx>0; sin x<0
\(1+tan^2x=\dfrac{1}{cos^2x}\)
=>\(\dfrac{1}{cos^2x}=1+\left(-3\right)^2=10\)
=>cosx=1/căn 10
=>sin x=-3/căn 10
\(A=\sqrt{10}\cdot\dfrac{1}{\sqrt{10}}-2\cdot\dfrac{-3}{\sqrt{10}}+3=4+\dfrac{6}{\sqrt{10}}=\dfrac{4\sqrt{10}+6}{\sqrt{10}}\)
a: cot x=3 nên cosx/sinx=3
=>cosx=3*sinx
\(B=\dfrac{2sin^2x+3sinx\cdot3\cdot sinx}{1-2\cdot\left(3\cdot sinx\right)^2}=\dfrac{11sin^2x}{sin^2x+cos^2x-18sin^2x}\)
\(=\dfrac{11sin^2x}{-17sin^2x+9sin^2x}=\dfrac{-11}{8}\)