K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2022

`cot  x = -3 => cos x = -3 sin x`

`=> A = [ 2 sin^2 x + 3 sin x . (-3 sin x ) ] / [ sin^2 x - 7 ( sin^2 x + cos^2 x ) ]`

`<=>A = [ -7 sin^2 x ] / [ sin^2 x - 7 ( sin^2 x + 9 sin^2 x ) ]`

`<=>A = [ -7 sin^2 x ] / [ -69 sin^2 x ]`

`<=> A = 7 / 69`

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

NV
3 tháng 3 2019

Giả sử các biểu thức đều có nghĩa

\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)

\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)

\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)

\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)

b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)

\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)

c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)

\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)

\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)

\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)

NV
4 tháng 11 2019

\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)

\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)

\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)

\(=-cot^2x.sin^2x+cos^2x+2\)

\(=-cos^2x+cos^2x+2=2\)

\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)

\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)

\(=\left(sin^2x+cos^2x\right)^4+1\)

\(=1^4+1=2\)

18 tháng 10 2018

bạn chỉ cần nhớ rằng: sin2x+ cos2x= 1 và cotx*tanx= 1 rồi quy đồng lên và làm bình thường

21 tháng 10 2022

\(=\dfrac{1+cotx-sin^2x}{1+\dfrac{cosx}{sinx}}-\dfrac{cos^2x}{1+\dfrac{sinx}{cosx}}\)

\(=\left(1+\dfrac{cosx}{sinx}-sin^2x\right):\dfrac{sinx+cosx}{sinx}-cos^2x:\dfrac{cosx+sinx}{cosx}\)

\(=\dfrac{sinx+cosx-sin^3x}{sinx}\cdot\dfrac{sinx}{sinx+cosx}-\dfrac{cos^3x}{cosx+sinx}\)

\(=\dfrac{sinx+cosx-sin^3x-cos^3x}{sinx+cosx}\)

\(=\dfrac{\left(sinx+cosx\right)-\left(sinx+cosx\right)\left(sin^2+cos^2x-sinx\cdot cosx\right)}{sinx+cosx}\)

\(=1-1+sinx\cdot cosx=\dfrac{1}{2}sin2x\)

NV
2 tháng 3 2019

Giả sử các biểu thức đã cho đều xác định

a/ \(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+\dfrac{sin^2x}{cos^2x}+1+tan^2x+tan^2x=1+2tan^2x\)

b/ \(\dfrac{sinx}{1+cosx}+\dfrac{1+cosx}{sinx}=\dfrac{sin^2x+\left(1+cosx\right)^2}{\left(1+cosx\right)sinx}=\dfrac{sin^2x+cos^2x+2cosx+1}{\left(1+cosx\right)sinx}\)

\(=\dfrac{1+2cosx+1}{\left(1+cosx\right)sinx}=\dfrac{2+2cosx}{\left(1+cosx\right)sinx}=\dfrac{2\left(1+cosx\right)}{\left(1+cosx\right)sinx}=\dfrac{2}{sinx}\)

c/ \(\dfrac{1-sinx}{cosx}=\dfrac{\left(1-sinx\right)cosx}{cos^2x}=\dfrac{\left(1-sinx\right)cosx}{1-sin^2x}\)

\(\dfrac{\left(1-sinx\right)cosx}{\left(1-sinx\right)\left(1+sinx\right)}=\dfrac{cosx}{1+sinx}\)

NV
2 tháng 3 2019

d/ \(\left(1-cosx\right)\left(1+cot^2x\right)=\left(1-cosx\right).\dfrac{1}{sin^2x}\)

\(=\dfrac{1-cosx}{1-cos^2x}=\dfrac{1-cosx}{\left(1-cosx\right)\left(1+cosx\right)}=\dfrac{1}{1+cosx}\)

e/ \(1-\dfrac{sin^2x}{1+cotx}-\dfrac{cos^2x}{1+tanx}=1-\dfrac{sin^3x}{sinx\left(1+\dfrac{cosx}{sinx}\right)}-\dfrac{cos^3x}{cosx\left(1+\dfrac{sinx}{cosx}\right)}\)

\(=1-\left(\dfrac{sin^3x}{sinx+cosx}+\dfrac{cos^3x}{sinx+cosx}\right)=1-\left(\dfrac{sin^3x+cos^3x}{sinx+cosx}\right)\)

\(=1-\left(\dfrac{\left(sinx+cosx\right)\left(sin^2x-sinx.cosx+cos^2x\right)}{sinx+cosx}\right)\)

\(=1-\left(1-sinx.cosx\right)=sinx.cosx\)

f/ Bạn ghi đề sai à?

a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)

\(=\sqrt{3}sinx-cosx\)

c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)

\(=\sqrt{3}sin2x-cos2x+4sinx+1\)

d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)

\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)

\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Đề thiếu. Bạn xem lại đề.

5 tháng 7 2021

1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)

\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)

\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)

Vậy...

2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)

\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)

\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)

\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)

Vậy...

3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)

\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)

\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)

Vậy...

4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)

\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)

\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)

Vậy...

5, Xem lại đề

6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)

\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)

Vậy...