K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2023

a, A = \(\dfrac{12x-2}{4x+1}\) 

2\(x\) - 4 = 0 ⇒ 2\(x\) = 4 ⇒ \(x\) = 4: 2 = 2

Giá trị của A tại 2\(x\) - 4 = 0 là giá trị của A tại \(x\) = 2

A = \(\dfrac{12\times2-2}{4\times2+1}\) = \(\dfrac{22}{9}\) 

b, A = 1  \(\Leftrightarrow\) \(\dfrac{12x-2}{4x+1}\) = 1 

                   12\(x\) - 2 = 4\(x\) + 1

                   12\(x\) - 4\(x\) = 1 + 2

                       8\(x\) = 3

                         \(x\) = \(\dfrac{3}{8}\)

c, A \(\in\) Z ⇔ 12\(x\) - 2 ⋮ 4\(x\) + 1  

                  12\(x\) + 3 - 5 ⋮ 4\(x\) + 1

                   3.(4\(x\) + 1) - 5 ⋮ 4\(x\) + 1

                                     5 ⋮ 4\(x\) + 1

           Ư(5) ={-5; -1; 1; 5}

Lập bảng ta có: 

\(4x+1\) -5 -1 1 5
\(x\) -3/2 -1/2 0 1

Vậy \(x\) \(\in\) {0; 1}

 

17 tháng 6 2023

ghi rõ lại đề đi bạn ơi

8 tháng 3 2018

Tìm được A =  24 5 và B =  - 6 x - 4  với x > 0 và x ≠ 4 ta tìm được 0 < x < 1

Ta có M =  - 1 + 2 x ∈ Z =>  x ∈ Ư(2) từ đó tìm được x=1

6 tháng 4 2021

Bài 1 : 

a, \(A=\frac{2x^2-4x+8}{x^3+8}=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{2}{x+2}\)

b, Ta có : \(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

TH1 : Thay x = 2 vào biểu thức trên ta được : 

\(\frac{2}{2+2}=\frac{2}{4}=\frac{1}{2}\)

TH2 : Thay x = -2 vào biểu thức trên ta được : 

\(\frac{2}{-2+2}=\frac{2}{0}\)vô lí 

c, ta có A = 2 hay \(\frac{2}{x+2}=2\)ĐK : \(x\ne-2\)

\(\Rightarrow2x+4=2\Leftrightarrow2x=-2\Leftrightarrow x=-1\)

Vậy với x = -1 thì A = 2 

d, Ta có A < 0 hay \(\frac{2}{x+2}< 0\)

\(\Rightarrow x+2< 0\)do 2 > 0 

\(\Leftrightarrow x< -2\)

Vậy với A < 0 thì x < -2 

e, Để A nhận giá trị nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4
6 tháng 4 2021

2.

ĐKXĐ : \(x\ne\pm2\)

a. \(B=\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b. | x - 1 | = 2 <=>\(\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\x=-1\end{cases}}\)

Với x = 3 thì \(B=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = - 1 thì \(B=\frac{-1-2}{-1+2}=-3\)

Vậy với | x - 1 | = 2 thì B đạt được 2 giá trị là B = 1/5 hoặc B = - 3

c. \(B=\frac{x-2}{x+2}=-1\)<=>\(-\left(x-2\right)=x+2\)

<=> \(-x+2=x+2\)<=>\(-x=x\)<=>\(x=0\)

d. \(B=\frac{x-2}{x+2}< 1\)<=>\(x-2< x+2\)luôn đúng \(\forall\)x\(\ne\pm2\)

e. \(B=\frac{x-2}{x+2}=\frac{x+2-4}{x+2}=1-\frac{4}{x+2}\)

Để B nguyên thì 4/x+2 nguyên => x + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }

=> x \(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

22 tháng 12 2022

loading...

18 tháng 12 2019

\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)

a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)

b) Theo đề bài ta có:

\(2x^2+x=0\)

\(\Rightarrow x\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)

Thay x = 0 (thỏa mãn điều kiện) vào P ta có:

\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)

Vậy khi x = 0 thì P = -1

c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)

Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)

Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)

\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)

Ta có bảng giá trị:

2x1-1
x\(\frac{1}{2}\)\(-\frac{1}{2}\)
 LoạiLoại

Vậy không có x thỏa mãn P \(\inℤ\)

d) Với x \(\ne\pm\frac{1}{2};P=2\)

\(\Leftrightarrow2x-1=2\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\)

Vậy \(x=\frac{3}{2}\)thì \(P=2\)

14 tháng 6 2023

a. \(A=\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{4x+2}{x^2-1}\)

\(A=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}+\dfrac{4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{\left(x+1\right)-\left(x-1\right)+4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{x+1-x+1+4x+2}{\left(x-1\right)\left(x+1\right)}\)

\(A=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)

b) Ta có: \(A=\dfrac{4}{x-1}=\dfrac{4}{2015}\) (ĐK: \(x\ne\pm1\) )

\(\Leftrightarrow8060=4\left(x-1\right)\)

\(\Leftrightarrow8060=4x-4\)

\(\Leftrightarrow8064=4x\)

\(\Leftrightarrow x=\dfrac{8064}{4}=2016\left(tm\right)\)

c) Ta có: \(\dfrac{4}{x-1}\left(x\ne1\right)\)

Để \(\dfrac{4}{x-1}\) nhận giá trị nguyên thì \(4:\left(x-1\right)\Leftrightarrow x-1\in\text{Ư}\left(4\right)=\left\{1;4;2\right\}\)

Vậy với x ∈ {2; 5; 3; 0; -1; -3} thì biểu thức \(\dfrac{4}{x-1}\) nhận giá trị nguyên

d) Thay \(x=-\dfrac{1}{2}\) vào biểu thức A ta được:

\(\dfrac{4}{-\dfrac{1}{2}-1}=-3\)

Vậy biểu thức A có giá trị -3 tại \(x=-\dfrac{1}{2}\)

20 tháng 12 2019

a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)

Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)

Để A  nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương

<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2

 <=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng: 

x + 2 1 -1 2 -2 4 -4
  x-1(tm)-3(tm)0(tm)-4(tm) 2(ktm)-6(tm)

Vậy ....